Artigos de revistas sobre o tema "Osteoclasts"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Osteoclasts".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Combs, Charlotte E., Karen Fuller, Hashethra Kumar, Anthony P. Albert, Grisha Pirianov, James McCormick, Ian C. Locke, Timothy J. Chambers e Kevin M. Lawrence. "Urocortin is a novel regulator of osteoclast differentiation and function through inhibition of a canonical transient receptor potential 1-like cation channel". Journal of Endocrinology 212, n.º 2 (14 de novembro de 2011): 187–97. http://dx.doi.org/10.1530/joe-11-0254.
Texto completo da fonteAlatalo, Sari L., Jussi M. Halleen, Teuvo A. Hentunen, Jukka Mönkkönen e H. Kalervo Väänänen. "Rapid Screening Method for Osteoclast Differentiation in Vitro That Measures Tartrate-resistant Acid Phosphatase 5b Activity Secreted into the Culture Medium". Clinical Chemistry 46, n.º 11 (1 de novembro de 2000): 1751–54. http://dx.doi.org/10.1093/clinchem/46.11.1751.
Texto completo da fonteNiida, Shumpei, Masato Kaku, Hitoshi Amano, Hisahiro Yoshida, Hiroshi Kataoka, Satomi Nishikawa, Kazuo Tanne, Norihiko Maeda, Shin-Ichi Nishikawa e Hiroaki Kodama. "Vascular Endothelial Growth Factor Can Substitute for Macrophage Colony-Stimulating Factor in the Support of Osteoclastic Bone Resorption". Journal of Experimental Medicine 190, n.º 2 (19 de julho de 1999): 293–98. http://dx.doi.org/10.1084/jem.190.2.293.
Texto completo da fonteFuller, K., e T. J. Chambers. "Localisation of mRNA for collagenase in osteocytic, bone surface and chondrocytic cells but not osteoclasts". Journal of Cell Science 108, n.º 6 (1 de junho de 1995): 2221–30. http://dx.doi.org/10.1242/jcs.108.6.2221.
Texto completo da fonteFuller, Karen, Brian Wong, Simon Fox, Yongwon Choi e Tim J. Chambers. "TRANCE Is Necessary and Sufficient for Osteoblast-mediated Activation of Bone Resorption in Osteoclasts". Journal of Experimental Medicine 188, n.º 5 (7 de setembro de 1998): 997–1001. http://dx.doi.org/10.1084/jem.188.5.997.
Texto completo da fonteFuller, Karen, Chiho Murphy, Barrie Kirstein, Simon W. Fox e Timothy J. Chambers. "TNFα Potently Activates Osteoclasts, through a Direct Action Independent of and Strongly Synergistic with RANKL". Endocrinology 143, n.º 3 (1 de março de 2002): 1108–18. http://dx.doi.org/10.1210/endo.143.3.8701.
Texto completo da fonteYu, Anna Xiao-Dan, Jian Xiao, Shi-Zheng Zhao, Xiang-Peng Kong, Kenneth Kin-Leung Kwan, Brody Zhong-Yu Zheng, Kevin Qi-Yun Wu, Tina Ting-Xia Dong e Karl Wah-Keung Tsim. "Biological Evaluation and Transcriptomic Analysis of Corylin as an Inhibitor of Osteoclast Differentiation". International Journal of Molecular Sciences 22, n.º 7 (29 de março de 2021): 3540. http://dx.doi.org/10.3390/ijms22073540.
Texto completo da fonteNakamura, I., M. F. Pilkington, P. T. Lakkakorpi, L. Lipfert, S. M. Sims, S. J. Dixon, G. A. Rodan e L. T. Duong. "Role of alpha(v)beta(3) integrin in osteoclast migration and formation of the sealing zone". Journal of Cell Science 112, n.º 22 (15 de novembro de 1999): 3985–93. http://dx.doi.org/10.1242/jcs.112.22.3985.
Texto completo da fonteKameda, Takashi, Hiroshi Mano, Tatsuhisa Yuasa, Yoshihisa Mori, Koshi Miyazawa, Miho Shiokawa, Yukiya Nakamaru et al. "Estrogen Inhibits Bone Resorption by Directly Inducing Apoptosis of the Bone-resorbing Osteoclasts". Journal of Experimental Medicine 186, n.º 4 (18 de agosto de 1997): 489–95. http://dx.doi.org/10.1084/jem.186.4.489.
Texto completo da fonteFuller, K., J. M. Owens e T. J. Chambers. "Macrophage inflammatory protein-1 alpha and IL-8 stimulate the motility but suppress the resorption of isolated rat osteoclasts." Journal of Immunology 154, n.º 11 (1 de junho de 1995): 6065–72. http://dx.doi.org/10.4049/jimmunol.154.11.6065.
Texto completo da fontePerkins, S. L., e S. J. Kling. "Local concentrations of macrophage colony-stimulating factor mediate osteoclastic differentiation". American Journal of Physiology-Endocrinology and Metabolism 269, n.º 6 (1 de dezembro de 1995): E1024—E1030. http://dx.doi.org/10.1152/ajpendo.1995.269.6.e1024.
Texto completo da fonteLerner, Ulf H. "New Molecules in the Tumor Necrosis Factor Ligand and Receptor Superfamilies with Importance for Physiological and Pathological Bone Resorption". Critical Reviews in Oral Biology & Medicine 15, n.º 2 (março de 2004): 64–81. http://dx.doi.org/10.1177/154411130401500202.
Texto completo da fonteFuller, K., J. M. Owens, C. J. Jagger, A. Wilson, R. Moss e T. J. Chambers. "Macrophage colony-stimulating factor stimulates survival and chemotactic behavior in isolated osteoclasts." Journal of Experimental Medicine 178, n.º 5 (1 de novembro de 1993): 1733–44. http://dx.doi.org/10.1084/jem.178.5.1733.
Texto completo da fonteAndersson, G. N., e S. C. Marks. "Tartrate-resistant acid ATPase as a cytochemical marker for osteoclasts." Journal of Histochemistry & Cytochemistry 37, n.º 1 (janeiro de 1989): 115–17. http://dx.doi.org/10.1177/37.1.2461980.
Texto completo da fonteHeinemann, Christiane, Josephine Adam, Benjamin Kruppke, Vera Hintze, Hans-Peter Wiesmann e Thomas Hanke. "How to Get Them off?—Assessment of Innovative Techniques for Generation and Detachment of Mature Osteoclasts for Biomaterial Resorption Studies". International Journal of Molecular Sciences 22, n.º 3 (29 de janeiro de 2021): 1329. http://dx.doi.org/10.3390/ijms22031329.
Texto completo da fonteMøller, Anaïs M. J., Jean-Marie Delaissé, Jacob B. Olesen, Luisa M. Canto, Silvia R. Rogatto, Jonna S. Madsen e Kent Søe. "Fusion Potential of Human Osteoclasts In Vitro Reflects Age, Menopause, and In Vivo Bone Resorption Levels of Their Donors—A Possible Involvement of DC-STAMP". International Journal of Molecular Sciences 21, n.º 17 (2 de setembro de 2020): 6368. http://dx.doi.org/10.3390/ijms21176368.
Texto completo da fonteMiyauchi, Yoshiteru, Ken Ninomiya, Hiroya Miyamoto, Akemi Sakamoto, Ryotaro Iwasaki, Hiroko Hoshi, Kana Miyamoto et al. "The Blimp1–Bcl6 axis is critical to regulate osteoclast differentiation and bone homeostasis". Journal of Experimental Medicine 207, n.º 4 (5 de abril de 2010): 751–62. http://dx.doi.org/10.1084/jem.20091957.
Texto completo da fonteMoreaux, Jerome, Dirk Hose, Alboukadel Kassambara, Thierry Reme, Philippe Moine, Guilhem Requirand, Hartmut Goldschmidt e Bernard Klein. "Osteoclast-gene expression profiling reveals osteoclast-derived CCR2 chemokines promoting myeloma cell migration". Blood 117, n.º 4 (27 de janeiro de 2011): 1280–90. http://dx.doi.org/10.1182/blood-2010-04-279760.
Texto completo da fonteCheng, Yin, Haixia Liu, Jing Li, Yujie Ma, Changheng Song, Yuhan Wang, Pei Li, Yanjing Chen e Zhiguo Zhang. "Evaluation of culture conditions for osteoclastogenesis in RAW264.7 cells". PLOS ONE 17, n.º 11 (17 de novembro de 2022): e0277871. http://dx.doi.org/10.1371/journal.pone.0277871.
Texto completo da fonteHuang, WH, AT Lau, LL Daniels, H. Fujii, U. Seydel, DJ Wood, JM Papadimitriou e MH Zheng. "Detection of estrogen receptor alpha, carbonic anhydrase II and tartrate-resistant acid phosphatase mRNAs in putative mononuclear osteoclast precursor cells of neonatal rats by fluorescence in situ hybridization". Journal of Molecular Endocrinology 20, n.º 2 (1 de abril de 1998): 211–19. http://dx.doi.org/10.1677/jme.0.0200211.
Texto completo da fonteMartin-Millan, Marta, Maria Almeida, Elena Ambrogini, Li Han, Haibo Zhao, Robert S. Weinstein, Robert L. Jilka, Charles A. O'Brien e Stavros C. Manolagas. "The Estrogen Receptor-α in Osteoclasts Mediates the Protective Effects of Estrogens on Cancellous But Not Cortical Bone". Molecular Endocrinology 24, n.º 2 (1 de fevereiro de 2010): 323–34. http://dx.doi.org/10.1210/me.2009-0354.
Texto completo da fonteHulley, Philippa A., e Helen J. Knowles. "A New Method to Sort Differentiating Osteoclasts into Defined Homogeneous Subgroups". Cells 11, n.º 24 (8 de dezembro de 2022): 3973. http://dx.doi.org/10.3390/cells11243973.
Texto completo da fonteDai, Jingjin, Rui Dong, Xinyun Han, Jianmei Li, Xiaoshan Gong, Yun Bai, Fei Kang et al. "Osteoclast-derived exosomal let-7a-5p targets Smad2 to promote the hypertrophic differentiation of chondrocytes". American Journal of Physiology-Cell Physiology 319, n.º 1 (1 de julho de 2020): C21—C33. http://dx.doi.org/10.1152/ajpcell.00039.2020.
Texto completo da fonteLee, Kyunghee, Incheol Seo, Mun Choi e Daewon Jeong. "Roles of Mitogen-Activated Protein Kinases in Osteoclast Biology". International Journal of Molecular Sciences 19, n.º 10 (1 de outubro de 2018): 3004. http://dx.doi.org/10.3390/ijms19103004.
Texto completo da fonteHuang, W. H., L. L. Daniels, D. J. Wood, U. Seydel, J. M. Papadimitriou e M. H. Zheng. "VITAMIN D RECEPTOR mRNA IS EXPRESSED IN OSTEOCLAST-LIKE CELLS OF HUMAN GIANT CELL TUMOR OF BONE (OSTEOCLASTOMA)". Journal of Musculoskeletal Research 03, n.º 03 (setembro de 1999): 201–7. http://dx.doi.org/10.1142/s021895779900021x.
Texto completo da fonteGwaltney, S. M., R. J. S. Galvin, K. B. Register, R. B. Rimler e M. R. Ackermann. "Effects of Pasteurella multocida Toxin on Porcine Bone Marrow Cell Differentiation into Osteoclasts and Osteoblasts". Veterinary Pathology 34, n.º 5 (setembro de 1997): 421–30. http://dx.doi.org/10.1177/030098589703400506.
Texto completo da fonteYagi, Mitsuru, Takeshi Miyamoto, Yumi Sawatani, Katsuya Iwamoto, Naobumi Hosogane, Nobuyuki Fujita, Kozo Morita et al. "DC-STAMP is essential for cell–cell fusion in osteoclasts and foreign body giant cells". Journal of Experimental Medicine 202, n.º 3 (1 de agosto de 2005): 345–51. http://dx.doi.org/10.1084/jem.20050645.
Texto completo da fonteHatton, R., M. Stimpel e T. J. Chambers. "Angiotensin II is generated from angiotensin I by bone cells and stimulates osteoclastic bone resorption in vitro". Journal of Endocrinology 152, n.º 1 (janeiro de 1997): 5–10. http://dx.doi.org/10.1677/joe.0.1520005.
Texto completo da fonteNa, Woojin, Eun-Jung Lee, Min-Kyung Kang, Yun-Ho Kim, Dong Yeon Kim, Hyeongjoo Oh, Soo-Il Kim, Su Yeon Oh e Young-Hee Kang. "Aesculetin Inhibits Osteoclastic Bone Resorption through Blocking Ruffled Border Formation and Lysosomal Trafficking". International Journal of Molecular Sciences 21, n.º 22 (13 de novembro de 2020): 8581. http://dx.doi.org/10.3390/ijms21228581.
Texto completo da fonteRoy, Michèle, e Sophie Roux. "Rab GTPases in Osteoclastic Bone Resorption and Autophagy". International Journal of Molecular Sciences 21, n.º 20 (16 de outubro de 2020): 7655. http://dx.doi.org/10.3390/ijms21207655.
Texto completo da fonteEwanchuk, Benjamin W., Corey R. Arnold, Dale R. Balce, Priyatha Premnath, Tanis L. Orsetti, Amy L. Warren, Alexandra Olsen, Roman J. Krawetz e Robin M. Yates. "A non-immunological role for γ-interferon–inducible lysosomal thiol reductase (GILT) in osteoclastic bone resorption". Science Advances 7, n.º 17 (abril de 2021): eabd3684. http://dx.doi.org/10.1126/sciadv.abd3684.
Texto completo da fonteKim, Tae-Ho, Chae Gyeong Jeong, Hyeong-U. Son, Man-Il Huh, Shin-Yoon Kim, Hong Kyun Kim e Sang-Han Lee. "Ethanolic Extract of Rubus coreanus Fruits Inhibits Bone Marrow-Derived Osteoclast Differentiation and Lipopolysaccharide-Induced Bone Loss". Natural Product Communications 12, n.º 12 (dezembro de 2017): 1934578X1701201. http://dx.doi.org/10.1177/1934578x1701201228.
Texto completo da fonteFeng, Shengmei, Lianfu Deng, Wei Chen, Jianzhong Shao, Guoliang Xu e Yi-Ping Li. "Atp6v1c1 is an essential component of the osteoclast proton pump and in F-actin ring formation in osteoclasts". Biochemical Journal 417, n.º 1 (12 de dezembro de 2008): 195–203. http://dx.doi.org/10.1042/bj20081073.
Texto completo da fonteChole, Richard A. "Osteoclasts in Chronic Otitis Media, Cholesteatoma, and Otosclerosis". Annals of Otology, Rhinology & Laryngology 97, n.º 6 (novembro de 1988): 661–66. http://dx.doi.org/10.1177/000348948809700615.
Texto completo da fonteAthanasou, N. A., J. Quinn, A. Heryet e J. O. McGee. "Localization of platelet antigens and fibrinogen on osteoclasts". Journal of Cell Science 89, n.º 1 (1 de janeiro de 1988): 115–22. http://dx.doi.org/10.1242/jcs.89.1.115.
Texto completo da fonteHayashi, Shin-Ichi, Toshiyuki Yamane, Akitomo Miyamoto, Hiroaki Hemmi, Hisashi Tagaya, Yasuko Tanio, Hidenobu Kanda, Hidetoshi Yamazaki e Takahiro Kunisada. "Commitment and differentiation of stem cells to the osteoclast lineage". Biochemistry and Cell Biology 76, n.º 6 (1 de dezembro de 1998): 911–22. http://dx.doi.org/10.1139/o98-099.
Texto completo da fonteBlair, H. C., S. L. Teitelbaum, L. E. Grosso, D. L. Lacey, H. L. Tan, D. W. McCourt e J. J. Jeffrey. "Extracellular-matrix degradation at acid pH. Avian osteoclast acid collagenase isolation and characterization". Biochemical Journal 290, n.º 3 (15 de março de 1993): 873–84. http://dx.doi.org/10.1042/bj2900873.
Texto completo da fonteWang, Qiang, Yi Xie, Quan-Sheng Du, Xiao-Jun Wu, Xu Feng, Lin Mei, Jay M. McDonald e Wen-Cheng Xiong. "Regulation of the formation of osteoclastic actin rings by proline-rich tyrosine kinase 2 interacting with gelsolin". Journal of Cell Biology 160, n.º 4 (10 de fevereiro de 2003): 565–75. http://dx.doi.org/10.1083/jcb.200207036.
Texto completo da fonteAbdel Razik, Heba E., Miho Nakamura, Leire Bergara-Muguruza, Uruj Sarwar, Mohammad Hassan, Robert Horowitz e Ahmed El-Ghannam. "Osteoblast-Mediated Resorption of Porous Bioactive SCPC Granules Enhances Bone Regeneration in Human Extraction Sockets". Solid State Phenomena 340 (23 de dezembro de 2022): 107–12. http://dx.doi.org/10.4028/p-32eola.
Texto completo da fonteFong, E. L. S., E. L. Prabha e T. Carney. "POS0348 DEVELOPING A WHOLE MOUNT FLUORESCENT OSTEOCLAST ACTIVITY ASSAY USING THE ELF97 PHOSPHATASE SUBSTRATE TO VISUALISE AND QUANTIFY IN SITU OSTEOCLAST ACTIVITY IN ZEBRAFISH (DANIO RERIO)". Annals of the Rheumatic Diseases 81, Suppl 1 (23 de maio de 2022): 427.3–428. http://dx.doi.org/10.1136/annrheumdis-2022-eular.5402.
Texto completo da fonteCackowski, Frank C., Judith L. Anderson, Kenneth D. Patrene, Rushir J. Choksi, Steven D. Shapiro, Jolene J. Windle, Harry C. Blair e G. David Roodman. "Osteoclasts are important for bone angiogenesis". Blood 115, n.º 1 (7 de janeiro de 2010): 140–49. http://dx.doi.org/10.1182/blood-2009-08-237628.
Texto completo da fonteKolb, Alexus D., Jinlu Dai, Evan T. Keller e Karen M. Bussard. "‘Educated’ Osteoblasts Reduce Osteoclastogenesis in a Bone-Tumor Mimetic Microenvironment". Cancers 13, n.º 2 (12 de janeiro de 2021): 263. http://dx.doi.org/10.3390/cancers13020263.
Texto completo da fonteLee, B. S., L. S. Holliday, B. Ojikutu, I. Krits e S. L. Gluck. "Osteoclasts express the B2 isoform of vacuolar H(+)-ATPase intracellularly and on their plasma membranes". American Journal of Physiology-Cell Physiology 270, n.º 1 (1 de janeiro de 1996): C382—C388. http://dx.doi.org/10.1152/ajpcell.1996.270.1.c382.
Texto completo da fonteLeightner, Amanda C., Carina Mello Guimaraes Meyers, Michael D. Evans, Kim C. Mansky, Rajaram Gopalakrishnan e Eric D. Jensen. "Regulation of Osteoclast Differentiation at Multiple Stages by Protein Kinase D Family Kinases". International Journal of Molecular Sciences 21, n.º 3 (5 de fevereiro de 2020): 1056. http://dx.doi.org/10.3390/ijms21031056.
Texto completo da fonteRobinson, Lisa J., Salvatore Mancarella, Irina L. Tourkova, John B. Barnett, Harry C. Blair e Jonathan Soboloff. "Critical Role for the Calcium-Release Activated Calcium Channel Orai1 In RANKL-Stimulated Osteoclast Formation From Monocytic Cells". Blood 116, n.º 21 (19 de novembro de 2010): 928. http://dx.doi.org/10.1182/blood.v116.21.928.928.
Texto completo da fonteKlein-Nulend, J., M. A. van Duin, T. P. Green, V. Everts e T. J. de Vries. "The dual specific Src/Abl kinase inhibitor AZD0530 inhibits the formation and activity of human osteoclasts". Journal of Clinical Oncology 25, n.º 18_suppl (20 de junho de 2007): 3602. http://dx.doi.org/10.1200/jco.2007.25.18_suppl.3602.
Texto completo da fonteChellaiah, M. A., N. Kizer, R. Biswas, U. Alvarez, J. Strauss-Schoenberger, L. Rifas, S. R. Rittling, D. T. Denhardt e K. A. Hruska. "Osteopontin Deficiency Produces Osteoclast Dysfunction Due to Reduced CD44 Surface Expression". Molecular Biology of the Cell 14, n.º 1 (janeiro de 2003): 173–89. http://dx.doi.org/10.1091/mbc.e02-06-0354.
Texto completo da fonteFrisch, Benjamin, John M. Ashton, Adam Olm-shipman, Lianping Xing, Craig T. Jordan e Laura Calvi. "Reciprocal Synergistic Interactions of Leukemic Cells with Osteoclast Progenitors in the Bone Microenvironment". Blood 112, n.º 11 (16 de novembro de 2008): 322. http://dx.doi.org/10.1182/blood.v112.11.322.322.
Texto completo da fonteChen, Shi, Alexander Robling, Xiaohong Li, Jin Yuan, Janet Hock, David A. Ingram, D. Wade Clapp e Fengchun Yang. "Hyperactivation of p21ras and PI3-K Cooperate To Alter Murine and Human NF1 Haploinsufficient Osteoclast Functions." Blood 108, n.º 11 (16 de novembro de 2006): 675. http://dx.doi.org/10.1182/blood.v108.11.675.675.
Texto completo da fonteBaek, Jong Min, Ju-Young Kim, Yoon-Hee Cheon, Sun-Hyang Park, Sung-Jun Ahn, Kwon-Ha Yoon, Jaemin Oh e Myeung Su Lee. "Dual Effect ofChrysanthemum indicumExtract to Stimulate Osteoblast Differentiation and Inhibit Osteoclast Formation and ResorptionIn Vitro". Evidence-Based Complementary and Alternative Medicine 2014 (2014): 1–13. http://dx.doi.org/10.1155/2014/176049.
Texto completo da fonte