Literatura científica selecionada sobre o tema "Oscillator flows"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Oscillator flows".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Oscillator flows"
Portillo, Daniel J., Eugene Hoffman, Matt Garcia, Elijah LaLonde, Christopher Combs e R. Lyle Hood. "The Effects of Compressibility on the Performance and Modal Structures of a Sweeping Jet Emitted from Various Scales of a Fluidic Oscillator". Fluids 7, n.º 7 (21 de julho de 2022): 251. http://dx.doi.org/10.3390/fluids7070251.
Texto completo da fonteShardt, Orest, Hassan Masoud e Howard A. Stone. "Oscillatory Marangoni flows with inertia". Journal of Fluid Mechanics 803 (19 de agosto de 2016): 94–118. http://dx.doi.org/10.1017/jfm.2016.507.
Texto completo da fonteKovacic, Ivana, Matthew Cartmell e Miodrag Zukovic. "Mixed-mode dynamics of certain bistable oscillators: behavioural mapping, approximations for motion and links with van der Pol oscillators". Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 471, n.º 2184 (dezembro de 2015): 20150638. http://dx.doi.org/10.1098/rspa.2015.0638.
Texto completo da fonteLUO, ALBERT C. J., e MOZHDEH S. FARAJI MOSADMAN. "SINGULARITY, SWITCHABILITY AND BIFURCATIONS IN A 2-DOF, PERIODICALLY FORCED, FRICTIONAL OSCILLATOR". International Journal of Bifurcation and Chaos 23, n.º 03 (março de 2013): 1330009. http://dx.doi.org/10.1142/s0218127413300097.
Texto completo da fonteVodinchar, Gleb. "Hereditary Oscillator Associated with the Model of a Large-Scale αω-Dynamo". Mathematics 8, n.º 11 (19 de novembro de 2020): 2065. http://dx.doi.org/10.3390/math8112065.
Texto completo da fonteSerrar, Abderrahim, Mohamed El Khlifi e Azeddine Kourta. "Characterisation and comparison of unsteady actuators: a fluidic oscillator and a sweeping jet". International Journal of Numerical Methods for Heat & Fluid Flow 32, n.º 4 (4 de outubro de 2021): 1237–54. http://dx.doi.org/10.1108/hff-07-2021-0474.
Texto completo da fonteKHEIRANDISH, F., e M. AMOOSHAHI. "RADIATION REACTION AND QUANTUM DAMPED HARMONIC OSCILLATOR". Modern Physics Letters A 20, n.º 39 (21 de dezembro de 2005): 3025–34. http://dx.doi.org/10.1142/s0217732305018384.
Texto completo da fonteMa, Zhao Wei, Tiang Jiang Hu, Han Zhou, Guang Ming Wang e Dai Bing Zhang. "Modeling of Fish Adaptive Behaviors in Unsteady Flows". Applied Mechanics and Materials 461 (novembro de 2013): 313–19. http://dx.doi.org/10.4028/www.scientific.net/amm.461.313.
Texto completo da fonteBILLINGHAM, JOHN. "Modelling the response of a vibrating-element density meter in a two-phase mixture". Journal of Fluid Mechanics 340 (10 de junho de 1997): 343–60. http://dx.doi.org/10.1017/s0022112097005600.
Texto completo da fonteCang, Shijian, Yueyue Shan e Zenghui Wang. "Conservative dynamics in a novel class of 3D generalized thermostatted systems". Chaos: An Interdisciplinary Journal of Nonlinear Science 32, n.º 8 (agosto de 2022): 083143. http://dx.doi.org/10.1063/5.0101570.
Texto completo da fonteTeses / dissertações sobre o assunto "Oscillator flows"
Barbagallo, Alexandre. "Model reduction and closed-loop control of oscillator and noise-amplifier flows". Palaiseau, Ecole polytechnique, 2011. https://pastel.hal.science/docs/00/65/49/30/PDF/Barbagallo_PhDThesis.pdf.
Texto completo da fonteCe travail est consacré au contrôle en boucle fermée des perturbations se développant linéairement dans des écoulements laminaires et incompressibles de types oscillateurs et amplificateurs de bruit. La loi de contrôle, calculée selon la théorie du contrôle LQG, est basée sur un modèle d'ordre réduit de l'écoulement obtenu par projection de Petrov-Galerkin. La stabilisation d'un écoulement de cavité de type oscillateur est traitée dans une première partie. Il est montré que la totalité de la partie instable de l'écoulement (les modes globaux instables) ainsi que la relation entrée-sortie (action de l'actionneur sur le capteur) de la partie stable doivent être captées par le modèle réduit afin de stabiliser le système. Les modes globaux, modes POD et modes BPOD sont successivement évalués comme bases de projection pour modéliser la partie stable. Les modes globaux ne parviennent pas à reproduire le comportement entrée-sortie de la partie stable et par conséquent ne peuvent stabiliser l'écoulement que lorsque l'instabilité du système est initialement faible (nombre de Reynolds proche de la criticité). En revanche, les modes POD et plus particulièrement BPOD sont capable d'extraire la dynamique entrée-sortie stable et permettent de stabiliser efficacement l'écoulement. La seconde partie de ce travail est consacrée à la réduction de l'amplification des perturbations sur une marche descendante. L'influence de la localisation du capteur et de la fonctionnelle de coût sur la performance du compensateur est étudiée. Il est montré que la troncature du modèle réduit peut rendre le système bouclé instable. Finalement, la possibilité de contrôler une simulation non-linéaire avec un modèle linéaire est évaluée
Salmon, Mathieu. "closed-loop control of finite amplitude perturbations : application to sub- and super-critical flow-bifurcations". Electronic Thesis or Diss., Paris, ENSAM, 2024. http://www.theses.fr/2024ENAME072.
Texto completo da fonteCurrent control optimisation methods struggle to stabilize a base flow in the case of finite amplitude perturbations. A boundary called edge of chaos separates into two regions the phase space of a flow which transitions subcritically to turbulence. The turbulent basin of attraction incorporates the perturbations whose energy is sufficient to trigger transition to turbulence, the laminar basin of attraction is the set of initial perturbations which are relaminarized. Such situation with two coexisting local attractors can also be encountered in flow cases outside the scope of transition to turbulence. A cylinder flow at Re = 100 exhibits a globally unstable base flow and a stable limit-cycle. Two basins of attraction emerge from the local stabilization of the base flow by a linear controller optimized on the linearized Navier-Stokes equations. We seek in this study to increase the basin of attraction of the base flow. The novelty of this work lies in the choice of the functional to be optimised with control. Indeed, the optimisation targets the energy of a perturbation located on the boundary of the two basins of attraction. We consider subcritical transition to turbulence using the well-known SSP model of Waleffe, a reduced-order model of the Navier-Stokes equations with only four degrees of freedom. The control methods elaboratored in this work are effective to induce a growth of the ”laminar” basin of attraction. In the cylinder flow, the robustness of an initial controller to finite amplitude perturbations is increased in a chosen direction of the phase space
Wang, Jianhong. "Oscillatory flows round combinations of cylinders". Thesis, University of Edinburgh, 1998. http://hdl.handle.net/1842/13196.
Texto completo da fonteWybrow, M. F. "Oscillatory flows about elliptic and circular cylinders". Thesis, University of East Anglia, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.389229.
Texto completo da fonteWijetunge, Janaka Jayasekera. "Velocity measurements in oscillatory and steady flows". Thesis, University of Cambridge, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.627385.
Texto completo da fonteAl-Asmi, Khalfan. "Vortex shedding in oscillatory flow". Thesis, University of Surrey, 1992. http://epubs.surrey.ac.uk/842864/.
Texto completo da fonteDick, Jennifer Ellen. "Sediment transport in oscillatory flow". Thesis, University of Cambridge, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.235836.
Texto completo da fonteStephens, Gerard Groves. "Suspension polymerisation in oscillatory flow". Thesis, University of Cambridge, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.627184.
Texto completo da fonteTait, Nicole Lynn. "Recovery factors in zero-mean internal oscillatory flows". Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 1995. http://handle.dtic.mil/100.2/ADA306233.
Texto completo da fonte"December 1995." Thesis advisor(s): Ashok Gopinath, Oscar Biblarz. Bibliography: p. 61. Also available online.
Krishna, Vikas. "Numerical simulation of vortex shedding in oscillatory flows". Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1995. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp05/mq25859.pdf.
Texto completo da fonteLivros sobre o assunto "Oscillator flows"
G, Friedman, Simon T. W e United States. National Aeronautics and Space Administration., eds. Fluid mechanics experiments in oscillatory flow. [Washington, DC]: National Aeronautics and Space Administration, 1992.
Encontre o texto completo da fonteAmin, Norsarahaida. Oscillation-induced mean flows and heat transfer. Norwich: University of East Anglia, 1989.
Encontre o texto completo da fonteCoward, Adrian V. Stability of oscillatory two phase Couette flow. Hampton, Va: Institute for Computer Applications in Science and Engineering, 1993.
Encontre o texto completo da fonteT, Papageorgiou Demetrios, e Langley Research Center, eds. Stability of oscillatory two phase coutette flow. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1993.
Encontre o texto completo da fonteCobbin, Adrian Matthew. Viscous forces on cylindrical bodies in attached turbulent oscillatory flows. Manchester: University of Manchester, 1996.
Encontre o texto completo da fonteG, Allan Brian, e Institute for Computer Applications in Science and Engineering., eds. Closed-loop separation control using oscillatory flow excitation. Hampton, Va: ICASE, National Aeronautics and Science Administration, Langley Research Center, 2000.
Encontre o texto completo da fonteG, Allan Brian, e Institute for Computer Applications in Science and Engineering., eds. Closed-loop separation control using oscillatory flow excitation. Hampton, Va: ICASE, National Aeronautics and Science Administration, Langley Research Center, 2000.
Encontre o texto completo da fonteG, Allan Brian, Institute for Computer Applications in Science and Engineering. e Langley Research Center, eds. Closed-loop separation control using oscillatory flow excitation. Hampton, Va: Institute for Computer Applications in Science and Engineering, Langley Research Center, 2000.
Encontre o texto completo da fonteCirovic, Srdjan. Characterizing flow-induced oscillation in a mechanical trachea. Ottawa: National Library of Canada, 1996.
Encontre o texto completo da fonteSarpkaya, Turgut. In-line and transverse forces on smooth and rough cylinders in oscillatory flow at high Reynolds numbers. Monterey, Calif: Naval Postgraduate School, 1986.
Encontre o texto completo da fonteCapítulos de livros sobre o assunto "Oscillator flows"
James, J., G. Joseph, A. Magaña e B. Mena. "Oscillatory Granular Flows". In Progress and Trends in Rheology V, 276–77. Heidelberg: Steinkopff, 1998. http://dx.doi.org/10.1007/978-3-642-51062-5_128.
Texto completo da fonteLi, Sicheng, e Jinjun Wang. "Frequency Effect on Properties of Turbulent/Non-turbulent Interface in Separated and Reattaching Flows Past an Oscillating Fence". In IUTAM Bookseries, 182–93. Cham: Springer Nature Switzerland, 2024. https://doi.org/10.1007/978-3-031-78151-3_14.
Texto completo da fonteWesterhof, Nicolaas, Nikolaos Stergiopulos e Mark I. M. Noble. "Oscillatory Flow Theory". In Snapshots of Hemodynamics, 41–43. Boston, MA: Springer US, 2010. http://dx.doi.org/10.1007/978-1-4419-6363-5_8.
Texto completo da fonteWesterhof, Nicolaas, Nikolaos Stergiopulos, Mark I. M. Noble e Berend E. Westerhof. "Oscillatory Flow Theory". In Snapshots of Hemodynamics, 47–50. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-91932-4_8.
Texto completo da fonteHolzbecher, Ekkehard O. "Oscillatory Convection". In Modeling Density-Driven Flow in Porous Media, 129–45. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-642-58767-2_7.
Texto completo da fonteBearman, P. W., X. W. Lin e P. R. Mackwood. "Prediction of vortex-induced oscillation of cylinders in oscillatory flow". In Hydroelasticity in Marine Technology, 3–16. London: Routledge, 2022. http://dx.doi.org/10.1201/9780203751503-2.
Texto completo da fonteMottaghi, Sohrob, Rene Gabbai e Haym Benaroya. "Lagrangian Flow-Oscillator Models". In An Analytical Mechanics Framework for Flow-Oscillator Modeling of Vortex-Induced Bluff-Body Oscillations, 95–142. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-26133-7_5.
Texto completo da fonteMottaghi, Sohrob, Rene Gabbai e Haym Benaroya. "Eulerian Flow-Oscillator Models". In An Analytical Mechanics Framework for Flow-Oscillator Modeling of Vortex-Induced Bluff-Body Oscillations, 189–240. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-26133-7_7.
Texto completo da fonteRibberink, Jan S., Jebbe J. van der Werf e Tom O’Donoghue. "Sand motion induced by oscillatory flows: sheet flow and vortex ripples". In ERCOFTAC Series, 3–14. Dordrecht: Springer Netherlands, 2007. http://dx.doi.org/10.1007/978-1-4020-6218-6_1.
Texto completo da fonteArwatz, Gilad, Ilan Fono e Avi Seifert. "Suction and Oscillatory Blowing Actuator". In IUTAM Symposium on Flow Control and MEMS, 33–44. Dordrecht: Springer Netherlands, 2008. http://dx.doi.org/10.1007/978-1-4020-6858-4_4.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Oscillator flows"
Shakouchi, Toshihiko. "Gas Absorption, Aeration, by Fluidic Oscillator Operated by Gas-Liquid Two-Phase Flow". In ASME/JSME 2003 4th Joint Fluids Summer Engineering Conference. ASMEDC, 2003. http://dx.doi.org/10.1115/fedsm2003-45132.
Texto completo da fonteChen, Chiko, Jing-Tang Yang e Chien-Hung Ho. "A Novel Asymmetric Microfluidic Oscillator". In ASME 2005 International Mechanical Engineering Congress and Exposition. ASMEDC, 2005. http://dx.doi.org/10.1115/imece2005-79269.
Texto completo da fonteMozgovoi, Yury D., e Sergei A. Khritkin. "Radiation of multibeam microwave generator on electron-oscillator flows". In 2017 Eighteenth International Vacuum Electronics Conference (IVEC). IEEE, 2017. http://dx.doi.org/10.1109/ivec.2017.8289678.
Texto completo da fonteMorimoto, Yuichiro, Kenji Kawamata, Haruki Madarame e Koji Okamoto. "Bifurcation of Water Column Oscillator Behavior Simulating Reactor Safety System: 1st Report, Experiment". In ASME 2002 International Mechanical Engineering Congress and Exposition. ASMEDC, 2002. http://dx.doi.org/10.1115/imece2002-32555.
Texto completo da fonteMozgovoi, Yury D., e Sergei A. Khritkin. "Phase focusing and synchronization of microwave generator with electron-oscillator flows". In 2017 Eighteenth International Vacuum Electronics Conference (IVEC). IEEE, 2017. http://dx.doi.org/10.1109/ivec.2017.8289645.
Texto completo da fonteCivrais, Clément H. B., Craig White e René Steijl. "Influence of anharmonic oscillator model for flows over a cylindrical body". In 2ND INTERNATIONAL CONFERENCE ON ADVANCED EARTH SCIENCE AND FOUNDATION ENGINEERING (ICASF 2023): Advanced Earth Science and Foundation Engineering. AIP Publishing, 2024. http://dx.doi.org/10.1063/5.0187445.
Texto completo da fonteGomez, Mateo, Mikhail N. Slipchenko, Steven F. Son e Terrence R. Meyer. "Burst-Mode Noncollinear Optical Parametric Oscillator". In Laser Applications to Chemical, Security and Environmental Analysis. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/lacsea.2022.ltu5b.3.
Texto completo da fonteMudunuru, M. K., M. Shabouei e K. B. Nakshatrala. "On Local and Global Species Conservation Errors for Nonlinear Ecological Models and Chemical Reacting Flows". In ASME 2015 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/imece2015-52760.
Texto completo da fonteFuchiwaki, Masaki, e Surya Raghu. "Flow Structure Formed by a Sweeping Jet Ejected Into a Main Flow". In ASME 2018 5th Joint US-European Fluids Engineering Division Summer Meeting. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/fedsm2018-83045.
Texto completo da fonteLuo, Albert C. J., e Mehul T. Patel. "Complex Motions in a Periodically Forced Oscillator With Multiple Discontinuities". In ASME 2007 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/detc2007-34872.
Texto completo da fonteRelatórios de organizações sobre o assunto "Oscillator flows"
Ayoul-Guilmard, Q., F. Nobile, S. Ganesh, M. Nuñez, R. Tosi, C. Soriano e R. Rosi. D5.5 Report on the application of multi-level Monte Carlo to wind engineering. Scipedia, 2022. http://dx.doi.org/10.23967/exaqute.2022.3.03.
Texto completo da fonteTelionis, D. P., e T. E. Diller. Heat transfer in oscillatory flow: Final report. Office of Scientific and Technical Information (OSTI), novembro de 1986. http://dx.doi.org/10.2172/6908819.
Texto completo da fonteRestrepo, Juan M. Particle and Blood Cell Dynamics in Oscillatory Flows Final Report. Office of Scientific and Technical Information (OSTI), setembro de 2008. http://dx.doi.org/10.2172/953697.
Texto completo da fonteSeume, J., G. Friedman e T. W. Simon. Fluid mechanics experiments in oscillatory flow. Volume 1. Office of Scientific and Technical Information (OSTI), março de 1992. http://dx.doi.org/10.2172/10181069.
Texto completo da fonteHowle, Laurens E. Enhancement of Oscillatory Flap Propulsors for Low Speed Flows in Water. Fort Belvoir, VA: Defense Technical Information Center, julho de 2010. http://dx.doi.org/10.21236/ada545931.
Texto completo da fonteInc., Kellogg Brown and Root. L51989 Submarine Pipeline On-Bottom Stability-Volume 1-Analysis and Design Guidelines. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), dezembro de 2002. http://dx.doi.org/10.55274/r0011168.
Texto completo da fonteSchilling, O., e M. Latini. Weighted Essentially Non-Oscillatory Simulations and Modeling of Complex Hydrodynamic Flows Part 1. Regular Shock Refraction. Office of Scientific and Technical Information (OSTI), junho de 2004. http://dx.doi.org/10.2172/15014460.
Texto completo da fonteRosa, M. P., e M. Z. Podowski. Modeling and numerical simulation of oscillatory two-phase flows, with application to boiling water nuclear reactors. Office of Scientific and Technical Information (OSTI), setembro de 1995. http://dx.doi.org/10.2172/107760.
Texto completo da fonteLatini, M., e O. Schilling. Weighted Essentially Non-Oscillatory Simulations and Modeling of Complex Hydrodynamic Flows. Part 1. Regular Shock Refraction. Office of Scientific and Technical Information (OSTI), janeiro de 2005. http://dx.doi.org/10.2172/875932.
Texto completo da fonteNobile, F., Q. Ayoul-Guilmard, S. Ganesh, M. Nuñez, A. Kodakkal, C. Soriano e R. Rossi. D6.5 Report on stochastic optimisation for wind engineering. Scipedia, 2022. http://dx.doi.org/10.23967/exaqute.2022.3.04.
Texto completo da fonte