Siga este link para ver outros tipos de publicações sobre o tema: Organoruthenium compounds Optical properties.

Artigos de revistas sobre o tema "Organoruthenium compounds Optical properties"

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Organoruthenium compounds Optical properties".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.

1

Humphrey, Mark G., Bryce Lockhart-Gillett, Marek Samoc, Brian W. Skelton, Vicki-Anne Tolhurst, Allan H. White, Adele J. Wilson e Brian F. Yates. "Synthesis, structure and optical limiting properties of organoruthenium–chalcogenide clusters". Journal of Organometallic Chemistry 690, n.º 6 (março de 2005): 1487–97. http://dx.doi.org/10.1016/j.jorganchem.2004.12.018.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Parveen, Shahida, Kelvin K. H. Tong, Muhammad Khawar Rauf, Mario Kubanik, Muhammad Ashraf Shaheen, Tilo Söhnel, Stephen M. F. Jamieson, Muhammad Hanif e Christian G. Hartinger. "Coordination Chemistry of Organoruthenium Compounds with Benzoylthiourea Ligands and their Biological Properties". Chemistry – An Asian Journal 14, n.º 8 (14 de fevereiro de 2019): 1262–70. http://dx.doi.org/10.1002/asia.201801798.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Tschan, Mathieu J. L., Younes Makoudi, Frédéric Chérioux, Frank Palmino, Isabelle Fabre-Francke, Saïd Sadki e Georg Süss-Fink. "Grafting of Organoruthenium Oligomers on Quartz Substrates: Synthesis, Electrochemistry, Optical Properties, and AFM Investigations". Chemistry of Materials 19, n.º 15 (julho de 2007): 3754–62. http://dx.doi.org/10.1021/cm070908p.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Botta, C., R. Bosisio, G. Bongiovanni, A. Mura e R. Tubino. "Optical properties of oligothiophene inclusion compounds". Synthetic Metals 84, n.º 1-3 (janeiro de 1997): 535–36. http://dx.doi.org/10.1016/s0379-6779(97)80849-1.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Mudryi, A. V., A. I. Patuk, I. A. Shakin, A. E. Kalmykov, S. F. Marenkin e A. M. Raukhman. "Optical properties of AIIBV semiconductor compounds". Materials Chemistry and Physics 44, n.º 2 (maio de 1996): 151–55. http://dx.doi.org/10.1016/0254-0584(95)01668-k.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Schoenes, J., e W. Reim. "Magneto-optical properties of uranium compounds". Journal of Magnetism and Magnetic Materials 54-57 (fevereiro de 1986): 1371–76. http://dx.doi.org/10.1016/0304-8853(86)90860-7.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Ismail, Lamia A., Mohammad Y. Alfaifi, Serag Eldin I. Elbehairi, Reda F. M. Elshaarawy, Emad M. Gad e W. N. El-Sayed. "Hybrid organoruthenium(II) complexes with thiophene-β-diketo-benzazole ligands: Synthesis, optical properties, CT-DNA interactions and anticancer activity". Journal of Organometallic Chemistry 949 (setembro de 2021): 121960. http://dx.doi.org/10.1016/j.jorganchem.2021.121960.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Knyazev, Yu V., e Yu I. Kuz’min. "Optical Properties of YFe2 and TbFe2 Compounds". Physics of the Solid State 62, n.º 7 (julho de 2020): 1132–35. http://dx.doi.org/10.1134/s1063783420070094.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Lange, P., H. Neff, M. Fearheiley e K. J. Bachmann. "Optical Properties of CuInSe2 and Related Compounds". Journal of The Electrochemical Society 132, n.º 9 (1 de setembro de 1985): 2281–83. http://dx.doi.org/10.1149/1.2114335.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Hidaka, Chiharu, e Takeo Takizawa. "Optical properties of Sr1−xEuxGa2S4 mixed compounds". Journal of Physics and Chemistry of Solids 69, n.º 2-3 (fevereiro de 2008): 358–61. http://dx.doi.org/10.1016/j.jpcs.2007.07.016.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
11

Wahab, L. A., M. B. El-Den, A. A. Farrag, S. A. Fayek e K. H. Marzouk. "Electrical and optical properties of chalcopyrite compounds". Journal of Physics and Chemistry of Solids 70, n.º 3-4 (março de 2009): 604–8. http://dx.doi.org/10.1016/j.jpcs.2008.12.018.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
12

Andzelm, Jan, Adam M. Rawlett, Joshua A. Orlicki, James F. Snyder e Kim K. Baldridge. "Optical Properties of Phthalocyanine and Naphthalocyanine Compounds". Journal of Chemical Theory and Computation 3, n.º 3 (18 de abril de 2007): 870–77. http://dx.doi.org/10.1021/ct700017b.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
13

Reshak, Ali Hussain, Z. Charifi e H. Baaziz. "Optical properties of some laves phases compounds". Current Opinion in Solid State and Materials Science 12, n.º 3-4 (junho de 2008): 39–43. http://dx.doi.org/10.1016/j.cossms.2008.09.001.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
14

Yalcin, B. G., M. Ustundag e M. Aslan. "Optical Properties of BN and BBi Compounds". Acta Physica Polonica A 125, n.º 2 (janeiro de 2014): 574–76. http://dx.doi.org/10.12693/aphyspola.125.574.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
15

Baldanzi, A., E. Bellotti e M. Goano. "Optical Properties of III-Nitride Ternary Compounds". physica status solidi (b) 228, n.º 2 (novembro de 2001): 425–28. http://dx.doi.org/10.1002/1521-3951(200111)228:2<425::aid-pssb425>3.0.co;2-q.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
16

Borghesi, A., G. Guizzetti e L. Nosenzo. "Optical properties of some AB2X4 layered compounds". Progress in Crystal Growth and Characterization 13, n.º 2 (janeiro de 1986): 97–103. http://dx.doi.org/10.1016/0146-3535(86)90031-6.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
17

Kübler, J. "Calculated magneto-optical properties of metallic compounds". Journal of Physics and Chemistry of Solids 56, n.º 11 (novembro de 1995): 1529–33. http://dx.doi.org/10.1016/0022-3697(95)00124-7.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
18

Dagys, R., G. J. Babonas, G. Pukinskas e L. Leonyuk. "Optical properties of Bi2Sr2CaCu2O8+δ-type compounds". Solid State Communications 79, n.º 11 (setembro de 1991): 955–57. http://dx.doi.org/10.1016/0038-1098(91)90450-a.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
19

Hurly, J., e P. T. Wedepohl. "Optical properties of coloured platinum intermetallic compounds". Journal of Materials Science 28, n.º 20 (outubro de 1993): 5648–53. http://dx.doi.org/10.1007/bf00367841.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
20

Yang, Sze-Ming, Hsin Juan Chen e Jiann Shen Lin. "Optical Properties of Model Compounds of Polyaniline". Journal of the Chinese Chemical Society 35, n.º 1 (fevereiro de 1988): 39–44. http://dx.doi.org/10.1002/jccs.198800006.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
21

Cuccioloni, Massimiliano, Valentina Cecarini, Laura Bonfili, Riccardo Pettinari, Alessia Tombesi, Noemi Pagliaricci, Laura Petetta, Mauro Angeletti e Anna Maria Eleuteri. "Enhancing the Amyloid-β Anti-Aggregation Properties of Curcumin via Arene-Ruthenium(II) Derivatization". International Journal of Molecular Sciences 23, n.º 15 (5 de agosto de 2022): 8710. http://dx.doi.org/10.3390/ijms23158710.

Texto completo da fonte
Resumo:
Alzheimer’s disease (AD) is a fatal neurodegenerative disorder associated with severe dementia, progressive cognitive decline, and irreversible memory loss. Although its etiopathogenesis is still unclear, the aggregation of amyloid-β (Aβ) peptides into supramolecular structures and their accumulation in the central nervous system play a critical role in the onset and progression of the disease. On such a premise, the inhibition of the early stages of Aβ aggregation is a potential prevention strategy for the treatment of AD. Since several natural occurring compounds, as well as metal-based molecules, showed promising inhibitory activities toward Aβ aggregation, we herein characterized the interaction of an organoruthenium derivative of curcumin with Aβ(1–40) and Aβ(1–42) peptides, and we evaluated its ability to inhibit the oligomerization/fibrillogenesis processes by combining in silico and in vitro methods. In general, besides being less toxic to neuronal cells, the derivative preserved the amyloid binding ability of the parent compound in terms of equilibrium dissociation constants but (most notably) was more effective both in retarding the formation and limiting the size of amyloid aggregates by virtue of a higher hindering effect on the amyloid–amyloid elongation surface. Additionally, the complex protected neuronal cells from amyloid toxicity.
Estilos ABNT, Harvard, Vancouver, APA, etc.
22

Díaz-García, María A. "Nonlinear optical properties of phthalocyanines and related compounds". Journal of Porphyrins and Phthalocyanines 13, n.º 04n05 (abril de 2009): 652–67. http://dx.doi.org/10.1142/s1088424609000784.

Texto completo da fonte
Resumo:
This paper aims to review the advances achieved in the field of nonlinear optics in relation to phthalocyanines and other related compounds. The main focus is on electronic nonlinear processes, such as second- and third-harmonic generation, and mostly on the work performed by Portuguese and Spanish research groups. Several aspects in which these teams were pioneers are described in more detail. In particular, they performed numerous experiments in solution, thanks to their synthetic efforts in preparing soluble compounds, thus enabling the determination of the nonlinear parameters at a molecular level. They also measured for the first time the real and imaginary components (i.e. the magnitude and the phase) of the nonlinear parameters of phthalocyanines and, in some cases, their frequency dispersion behavior. Such detailed studies allow for the elaboration of microscopic models to identify the electronic levels involved in nonlinear processes. Some Spanish groups were also pioneers in the characterization of the nonlinear optical properties of unsymmetrically substituted phthalocyanines and other related compounds, such as triazolehemiporphyrazines and subphthalocyanines.
Estilos ABNT, Harvard, Vancouver, APA, etc.
23

Knyazev, Yu V., A. V. Lukoyanov, Yu I. Kuz'min e V. S. Gaviko. "Electronic structure and optical properties of GdNi2Mnx compounds". Low Temperature Physics 44, n.º 2 (fevereiro de 2018): 157–61. http://dx.doi.org/10.1063/1.5020912.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
24

Gazhulina, Anastasia P., e Mikhail O. Marychev. "B3 andB20 compounds: pseudosymmetry and nonlinear optical properties". Acta Crystallographica Section A Foundations and Advances 71, a1 (23 de agosto de 2015): s322. http://dx.doi.org/10.1107/s2053273315095157.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
25

Li, Yuanzuo, Jing Li, Runzhou Su e Jingang Cui. "Nonlinear optical properties of dihydrobenzothiazolylidene and dihydroquinoinylidene compounds". Optical Materials 36, n.º 2 (dezembro de 2013): 437–43. http://dx.doi.org/10.1016/j.optmat.2013.10.006.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
26

Kučera, M., e P. Hasa. "Magneto-optical properties of UxY1−xFe10Si2 intermetallic compounds". Journal of Magnetism and Magnetic Materials 316, n.º 2 (setembro de 2007): e466-e469. http://dx.doi.org/10.1016/j.jmmm.2007.02.182.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
27

Benia, H. M., M. Guemmaz, G. Schmerber, A. Mosser e J. C. Parlebas. "Optical and electrical properties of sputtered ZrN compounds". Catalysis Today 89, n.º 3 (março de 2004): 307–12. http://dx.doi.org/10.1016/j.cattod.2003.12.006.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
28

Schoenes, J. "Optical and electrical transport properties of actinide compounds". Journal of the Less Common Metals 121 (julho de 1986): 87–96. http://dx.doi.org/10.1016/0022-5088(86)90518-7.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
29

Delin, Anna, Olle Eriksson, Rajeev Ahuja, Börje Johansson, M. S. S. Brooks, Thomas Gasche, Sushil Auluck e J. M. Wills. "Optical properties of the group-IVBrefractory metal compounds". Physical Review B 54, n.º 3 (15 de julho de 1996): 1673–81. http://dx.doi.org/10.1103/physrevb.54.1673.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
30

Balykina, E. A., E. A. Ganshina, G. S. Krinchik, A. Yu Trifonov e I. O. Troyanchuk. "Magneto-optical properties of new manganese oxide compounds". Journal of Magnetism and Magnetic Materials 117, n.º 1-2 (novembro de 1992): 259–69. http://dx.doi.org/10.1016/0304-8853(92)90319-j.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
31

Stankiewicz, Jolanta, e Juan Bartolomé. "Magnetotransport properties of compounds". Journal of Magnetism and Magnetic Materials 290-291 (abril de 2005): 1172–76. http://dx.doi.org/10.1016/j.jmmm.2004.11.571.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
32

Jun, CHEN, WANG Shuang-Qing e YANG Guo-Qiang. "Nonlinear Optical Limiting Properties of Organic Metal Phthalocyanine Compounds". Acta Physico-Chimica Sinica 31, n.º 4 (2015): 595–611. http://dx.doi.org/10.3866/pku.whxb201502023.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
33

Shan, Y. Ding and Jing. "Optical and electronic properties of organoboron compounds in solvent". Journal of Atomic and Molecular Sciences 8, n.º 2 (junho de 2017): 63–69. http://dx.doi.org/10.4208/jams.071917.091517a.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
34

Itahara, Hiroshi, e Hideyuki Nakano. "Synthesis and optical properties of two-dimensional nanosilicon compounds". Japanese Journal of Applied Physics 56, n.º 5S1 (16 de fevereiro de 2017): 05DA02. http://dx.doi.org/10.7567/jjap.56.05da02.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
35

Gong, Lijing, Cheng Ma, Jian Zhang, Xiangyu Zhang e Kun Jin. "Optical and NLO properties of zigzag carbon nanobelt compounds". Journal of Molecular Structure 1244 (novembro de 2021): 130936. http://dx.doi.org/10.1016/j.molstruc.2021.130936.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
36

Marinescu, Maria, Ludmila-Otilia Cinteză e Irina Zarafu. "Synthesis of some Heterocyclic Compounds with Nonlinear Optical Properties". Proceedings 57, n.º 1 (9 de novembro de 2020): 3. http://dx.doi.org/10.3390/proceedings2020057003.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
37

Domondon, Andrew, Yoshinori Iketaki, Koumei Nagai, Yu Sato e Tsutomu Watanabe. "Optical Properties of Carbon Compounds Near the K-edge". IEEJ Transactions on Electronics, Information and Systems 127, n.º 9 (2007): 1340–41. http://dx.doi.org/10.1541/ieejeiss.127.1340.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
38

Breitzer, Jonathan G., Dana D. Dlott, Lawrence K. Iwaki, Sean M. Kirkpatrick e Thomas B. Rauchfuss. "Third-Order Nonlinear Optical Properties of Sulfur-Rich Compounds". Journal of Physical Chemistry A 103, n.º 35 (setembro de 1999): 6930–37. http://dx.doi.org/10.1021/jp990137f.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
39

Bulatetskaya, L. V., V. V. Bozhko, G. E. Davidyuk e O. V. Parasyuk. "Optical and photoelectrical properties of AgCd2GaS4 single-crystal compounds". Semiconductors 42, n.º 5 (maio de 2008): 508–13. http://dx.doi.org/10.1134/s1063782608050035.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
40

Khenata, R., B. Daoudi, M. Sahnoun, H. Baltache, M. Rérat, A. H. Reshak, B. Bouhafs, H. Abid e M. Driz. "Structural, electronic and optical properties of fluorite-type compounds". European Physical Journal B 47, n.º 1 (setembro de 2005): 63–70. http://dx.doi.org/10.1140/epjb/e2005-00301-6.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
41

Doğan, Kübra, Aybüke Gülkaya, Mehrdad Forough e Özgül Persil Çetinkol. "Novel Fluorescent Azacyanine Compounds: Improved Synthesis and Optical Properties". ACS Omega 5, n.º 36 (31 de agosto de 2020): 22874–82. http://dx.doi.org/10.1021/acsomega.0c02202.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
42

Essaidi, Z., J. Niziol e B. Sahraoui. "Azo-azulene based compounds-nonlinear optical and photorefractive properties". Optical Materials 33, n.º 9 (julho de 2011): 1387–90. http://dx.doi.org/10.1016/j.optmat.2011.02.039.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
43

HALILOV, S. V., e R. FEDER. "THEORY OF OPTICAL AND MAGNETOOPTICAL PROPERTIES OF INVAR COMPOUNDS". International Journal of Modern Physics B 07, n.º 01n03 (janeiro de 1993): 683–86. http://dx.doi.org/10.1142/s0217979293001438.

Texto completo da fonte
Resumo:
The frequency-dependent optical conductivity tensor for ferromagnetic transition metal compounds is determined in a theoretical framework, in which spin-orbit interaction and ferromagnetic exchange interaction are included on an equal footing. The interplay of the latter two mechanisms manifests itself in substantial modifications of the diagonal tensor components and the appearance of offdiagonal components, and thereby in optical and magnetooptical properties. Numerical calculations for Fe3Pt using a “high-spin” model yield a polar Kerr rotation angle in good agreement with experimental data, Results for the diagonal tensor components reveal very pronounced differences between assumed ”high-spin” and ”low-spin” models of Fe3Pt. We conclude that specific experimental studies should be able to provide more information on the still not completely resolved issue of the nature of the INVAR mechanism in Fe3Pt.
Estilos ABNT, Harvard, Vancouver, APA, etc.
44

Kang, Ji Hoon, e Kwang Joo Kim. "Structural, optical, and electronic properties of cubic TiNx compounds". Journal of Applied Physics 86, n.º 1 (julho de 1999): 346–50. http://dx.doi.org/10.1063/1.370736.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
45

Jung, Eilho, Seokbae Lee, Seulki Roh, Xiuqing Meng, Sefaattin Tongay, Jihoon Kang, Tuson Park e Jungseek Hwang. "Optical properties of NbCl5 and ZnMg intercalated graphite compounds". Journal of Physics D: Applied Physics 47, n.º 48 (13 de novembro de 2014): 485304. http://dx.doi.org/10.1088/0022-3727/47/48/485304.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
46

Spitaler, J., E. Ya. Sherman, C. Ambrosch-Draxl e H. G. Evertz. "Optical Properties and Raman Scattering of Vanadium Ladder Compounds". Physica Scripta T109 (2004): 159. http://dx.doi.org/10.1238/physica.topical.109a00159.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
47

Ferreira da Silva, A., I. Pepe, C. Persson, J. Souza de Almeida, C. Moys�s Ara�jo, R. Ahuja, B. Johansson, C. Y. An e J. H. Guo. "Optical Properties of Oxide Compounds PbO, SnO2 and TiO2". Physica Scripta T109 (2004): 180. http://dx.doi.org/10.1238/physica.topical.109a00180.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
48

Županović, P., A. Bjeliš e S. Barišić. "Crystal stability and optical properties of organic chain compounds". Europhysics Letters (EPL) 45, n.º 2 (15 de janeiro de 1999): 188–94. http://dx.doi.org/10.1209/epl/i1999-00145-8.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
49

Gierschner, J., L. Lüer, D. Oelkrug, E. Musluoğlu, B. Behnisch e M. Hanack. "Preparation and Optical Properties of Oligophenylenevinylene/Perhydrotriphenylene Inclusion Compounds". Advanced Materials 12, n.º 10 (maio de 2000): 757–61. http://dx.doi.org/10.1002/(sici)1521-4095(200005)12:10<757::aid-adma757>3.0.co;2-f.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
50

Kagaya, H. Matsuo, e T. Soma. "Thermal Properties of Tetrahedral Compounds". physica status solidi (b) 142, n.º 2 (1 de agosto de 1987): 411–16. http://dx.doi.org/10.1002/pssb.2221420210.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Oferecemos descontos em todos os planos premium para autores cujas obras estão incluídas em seleções literárias temáticas. Contate-nos para obter um código promocional único!

Vá para a bibliografia