Artigos de revistas sobre o tema "Organic Hole transporting materials"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Organic Hole transporting materials".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Świst, Agnieszka, Jadwiga Sołoducho, Przemysław Data e Mieczysław Łapkowski. "Thianthrene-based oligomers as hole transporting materials". Arkivoc 2012, n.º 3 (24 de janeiro de 2012): 193–209. http://dx.doi.org/10.3998/ark.5550190.0013.315.
Texto completo da fonteNamespetra, Andrew M., Arthur D. Hendsbee, Gregory C. Welch e Ian G. Hill. "Development of simple hole-transporting materials for perovskite solar cells". Canadian Journal of Chemistry 94, n.º 4 (abril de 2016): 352–59. http://dx.doi.org/10.1139/cjc-2015-0427.
Texto completo da fonteZhao, Xiaojuan, e Mingkui Wang. "Organic hole-transporting materials for efficient perovskite solar cells". Materials Today Energy 7 (março de 2018): 208–20. http://dx.doi.org/10.1016/j.mtener.2017.09.011.
Texto completo da fonteCho, Young Joon, Min Ji Jeong, Ji Hye Park, Weiguang Hu, Jongchul Lim e Hyo Sik Chang. "Charge Transporting Materials Grown by Atomic Layer Deposition in Perovskite Solar Cells". Energies 14, n.º 4 (22 de fevereiro de 2021): 1156. http://dx.doi.org/10.3390/en14041156.
Texto completo da fonteJia, Haoran, Huanyu Ma, Xiangyang Liu, Donghui Xu, Ting Yuan, Chao Zou e Zhan'ao Tan. "Engineering organic–inorganic perovskite planar heterojunction for efficient carbon dots based light-emitting diodes". Applied Physics Reviews 9, n.º 2 (junho de 2022): 021406. http://dx.doi.org/10.1063/5.0085692.
Texto completo da fonteShahnawaz, Shahnawaz, Sujith Sudheendran Swayamprabha, Mangey Ram Nagar, Rohit Ashok Kumar Yadav, Sanna Gull, Deepak Kumar Dubey e Jwo-Huei Jou. "Hole-transporting materials for organic light-emitting diodes: an overview". Journal of Materials Chemistry C 7, n.º 24 (2019): 7144–58. http://dx.doi.org/10.1039/c9tc01712g.
Texto completo da fonteMehdi, S., R. Amraoui e A. Aissat. "Numerical investigation of organic light emitting diode OLED with different hole transport materials". Digest Journal of Nanomaterials and Biostructures 17, n.º 3 (1 de agosto de 2022): 781. http://dx.doi.org/10.15251/djnb.2022.173.781.
Texto completo da fontePham, Hong Duc, Terry Chien‐Jen Yang, Sagar M. Jain, Gregory J. Wilson e Prashant Sonar. "Hole Transporting Materials: Development of Dopant‐Free Organic Hole Transporting Materials for Perovskite Solar Cells (Adv. Energy Mater. 13/2020)". Advanced Energy Materials 10, n.º 13 (abril de 2020): 2070057. http://dx.doi.org/10.1002/aenm.202070057.
Texto completo da fonteYuqiu, Qu, Zhang Liuyang, An Limin e Wei Hong. "Investigation on photoluminescence quenching of CdSe/ZnS quantum dots by organic charge transporting materials". Materials Science-Poland 33, n.º 4 (1 de dezembro de 2015): 709–13. http://dx.doi.org/10.1515/msp-2015-0120.
Texto completo da fonteChooppawa, Tianchai, Supawadee Namuangruk, Hiroshi M. Yamamoto, Vinich Promarak e Paitoon Rashatasakhon. "Synthesis, characterization, and hole-transporting properties of benzotriazatruxene derivatives". Journal of Materials Chemistry C 7, n.º 47 (2019): 15035–41. http://dx.doi.org/10.1039/c9tc04155a.
Texto completo da fonteSun, Dianming, Zhongjie Ren, Martin R. Bryce e Shouke Yan. "Arylsilanes and siloxanes as optoelectronic materials for organic light-emitting diodes (OLEDs)". Journal of Materials Chemistry C 3, n.º 37 (2015): 9496–508. http://dx.doi.org/10.1039/c5tc01638j.
Texto completo da fonteLIU, Xue-Peng, Fan-Tai KONG, Wang-Chao CHEN, Ting YU, Fu-Ling GUO, Jian CHEN e Song-Yuan DAI. "Application of Organic Hole-Transporting Materials in Perovskite Solar Cells". Acta Physico-Chimica Sinica 32, n.º 6 (2016): 1347–70. http://dx.doi.org/10.3866/pku.whxb201603143.
Texto completo da fonteShao, Ke-Feng, Ying-Feng Li, Lian-Ming Yang, Xin-Jun Xu, Gui Yu e Yun-Qi Liu. "HighTgFluorene-based Hole-transporting Materials for Organic Light-emitting Diodes". Chemistry Letters 34, n.º 12 (dezembro de 2005): 1604–5. http://dx.doi.org/10.1246/cl.2005.1604.
Texto completo da fonteLv, Hai Jun, Yi Feng Yu, Lei Liu, Ai Bing Chen, Zhi Chao Hu e Kai Huang. "Synthesis and Properties of Novel Hole-Transporting Materials Containing Triphenylamine and Bipyridine Units". Advanced Materials Research 690-693 (maio de 2013): 619–22. http://dx.doi.org/10.4028/www.scientific.net/amr.690-693.619.
Texto completo da fonteGetautis, V., J. V. Grazulevicius, M. Daskeviciene, T. Malinauskas, D. Jankunaite, V. Gaidelis, V. Jankauskas, J. Sidaravicius e Z. Tokarski. "Novel hydrazone based polymers as hole transporting materials". Polymer 46, n.º 19 (setembro de 2005): 7918–22. http://dx.doi.org/10.1016/j.polymer.2005.06.085.
Texto completo da fonteNeogi, Ishita, Samik Jhulki, Madhu Rawat, R. S. Anand, Tahsin J. Chow e Jarugu Narasimha Moorthy. "Organic amorphous hole-transporting materials based on Tröger's Base: alternatives to NPB". RSC Advances 5, n.º 34 (2015): 26806–10. http://dx.doi.org/10.1039/c5ra03391h.
Texto completo da fonteLi, Ming-Hsien, Che-Wei Hsu, Po-Shen Shen, Hsin-Min Cheng, Yun Chi, Peter Chen e Tzung-Fang Guo. "Novel spiro-based hole transporting materials for efficient perovskite solar cells". Chemical Communications 51, n.º 85 (2015): 15518–21. http://dx.doi.org/10.1039/c5cc04405g.
Texto completo da fonteYao, Huiyun, Tai Wu, Bingxue Wu, Heng Zhang, Zhihui Wang, Zhe Sun, Song Xue, Yong Hua e Mao Liang. "The triple π-bridge strategy for tailoring indeno[2,1-b]carbazole-based HTMs enables perovskite solar cells with efficiency exceeding 21%". Journal of Materials Chemistry A 9, n.º 13 (2021): 8598–606. http://dx.doi.org/10.1039/d1ta00315a.
Texto completo da fonteConnell, Arthur, Zhiping Wang, Yen-Hung Lin, Peter C. Greenwood, Alan A. Wiles, Eurig W. Jones, Leo Furnell et al. "Low cost triazatruxene hole transporting material for >20% efficiency perovskite solar cells". Journal of Materials Chemistry C 7, n.º 18 (2019): 5235–43. http://dx.doi.org/10.1039/c8tc04231d.
Texto completo da fonteZhu, Li Lin, Bing Zhang, Kai Xuan Zhou, Jian Xi Yao e Song Yuan Dai. "Molecular Dynamics of the Assembly Modes of the Oligothiophene Polymers with Different Chain Lengths". Key Engineering Materials 727 (janeiro de 2017): 476–81. http://dx.doi.org/10.4028/www.scientific.net/kem.727.476.
Texto completo da fonteAnrango-Camacho, Cinthya, Karla Pavón-Ipiales, Bernardo A. Frontana-Uribe e Alex Palma-Cando. "Recent Advances in Hole-Transporting Layers for Organic Solar Cells". Nanomaterials 12, n.º 3 (28 de janeiro de 2022): 443. http://dx.doi.org/10.3390/nano12030443.
Texto completo da fonteDaskeviciene, Maryte, Sanghyun Paek, Artiom Magomedov, Kyoung Taek Cho, Michael Saliba, Ausra Kizeleviciute, Tadas Malinauskas et al. "Molecular engineering of enamine-based small organic compounds as hole-transporting materials for perovskite solar cells". Journal of Materials Chemistry C 7, n.º 9 (2019): 2717–24. http://dx.doi.org/10.1039/c8tc06297h.
Texto completo da fonteUsluer, Özlem. "New spirobifluorene-based hole-transporting semiconductors for electroluminescent devices". J. Mater. Chem. C 2, n.º 38 (2014): 8098–104. http://dx.doi.org/10.1039/c4tc01458h.
Texto completo da fonteDeng, Jidong, Weixia Hu, Wei Shen, Ming Li e Rongxing He. "Exploring the electrochemical properties of hole transporting materials from first-principles calculations: an efficient strategy to improve the performance of perovskite solar cells". Physical Chemistry Chemical Physics 21, n.º 3 (2019): 1235–41. http://dx.doi.org/10.1039/c8cp06693k.
Texto completo da fonteKim, Young Kook, e Seok-Hwan Hwang. "Highly efficient organic light-emitting diodes using novel hole-transporting materials". Synthetic Metals 156, n.º 16-17 (agosto de 2006): 1028–35. http://dx.doi.org/10.1016/j.synthmet.2006.06.025.
Texto completo da fonteRen, Xiaofan, Bert D. Alleyne, Peter I. Djurovich, Chihaya Adachi, Irina Tsyba, Robert Bau e Mark E. Thompson. "Organometallic Complexes as Hole-Transporting Materials in Organic Light-Emitting Diodes". Inorganic Chemistry 43, n.º 5 (março de 2004): 1697–707. http://dx.doi.org/10.1021/ic035183f.
Texto completo da fonteTanaka, Hiromitsu, Shizou Tokito, Yasunori Taga e Akane Okada. "Novel hole-transporting materials based on triphenylamine for organic electroluminescent devices". Chemical Communications, n.º 18 (1996): 2175. http://dx.doi.org/10.1039/cc9960002175.
Texto completo da fonteSheibani, Esmaeil, Li Yang e Jinbao Zhang. "Recent Advances in Organic Hole Transporting Materials for Perovskite Solar Cells". Solar RRL 4, n.º 12 (29 de setembro de 2020): 2000461. http://dx.doi.org/10.1002/solr.202000461.
Texto completo da fonteGetautis, V., O. Paliulis, R. Degutyte e I. Paulauskaite. "Synthesis of New Branched Hydrazones as Potential Hole-transporting Materials". Chemistry of Heterocyclic Compounds 40, n.º 1 (janeiro de 2004): 90–93. http://dx.doi.org/10.1023/b:cohc.0000023774.99588.5b.
Texto completo da fonteJhulki, Samik, e Jarugu Narasimha Moorthy. "Small molecular hole-transporting materials (HTMs) in organic light-emitting diodes (OLEDs): structural diversity and classification". Journal of Materials Chemistry C 6, n.º 31 (2018): 8280–325. http://dx.doi.org/10.1039/c8tc01300d.
Texto completo da fonteTagare, Jairam, Rohit Ashok Kumar Yadav, Sujith Sudheendran Swayamprabha, Deepak Kumar Dubey, Jwo-Huei Jou e Sivakumar Vaidyanathan. "Efficient solution-processed deep-blue CIEy ∈ (0.05) and pure-white CIEx,y ∈ (0.34, 0.32) organic light-emitting diodes: experimental and theoretical investigation". Journal of Materials Chemistry C 9, n.º 14 (2021): 4935–47. http://dx.doi.org/10.1039/d1tc00228g.
Texto completo da fonteMatsuo, Yutaka, e Hao-Sheng Lin. "(Invited) Toward Nanocarbon Materials-Based Organic and Perovskite Solar Cells". ECS Meeting Abstracts MA2022-01, n.º 10 (7 de julho de 2022): 796. http://dx.doi.org/10.1149/ma2022-0110796mtgabs.
Texto completo da fonteHuang, Dingyan, Huimin Xiang, Ran Ran, Wei Wang, Wei Zhou e Zongping Shao. "Recent Advances in Nanostructured Inorganic Hole−Transporting Materials for Perovskite Solar Cells". Nanomaterials 12, n.º 15 (28 de julho de 2022): 2592. http://dx.doi.org/10.3390/nano12152592.
Texto completo da fonteKumar, Sudhir, Chih-Chia An, Snehasis Sahoo, Raimonda Griniene, Dmytro Volyniuk, Juozas V. Grazulevicius, Saulius Grigalevicius e Jwo-Huei Jou. "Solution-processable naphthalene and phenyl substituted carbazole core based hole transporting materials for efficient organic light-emitting diodes". Journal of Materials Chemistry C 5, n.º 38 (2017): 9854–64. http://dx.doi.org/10.1039/c7tc03049e.
Texto completo da fonteLiu, Xicheng, Junfei Liang, Jing You, Lei Ying, Yin Xiao, Shirong Wang e Xianggao Li. "Small molecular hole-transporting and emitting materials for hole-only green organic light-emitting devices". Dyes and Pigments 131 (agosto de 2016): 41–48. http://dx.doi.org/10.1016/j.dyepig.2016.03.052.
Texto completo da fonteKwak, Chan Kyu, Gabriel E. Pérez, Benjamin G. Freestone, Sulaiman A. Al-Isaee, Ahmed Iraqi, David G. Lidzey e Alan D. F. Dunbar. "Improved efficiency in organic solar cells via conjugated polyelectrolyte additive in the hole transporting layer". Journal of Materials Chemistry C 4, n.º 45 (2016): 10722–30. http://dx.doi.org/10.1039/c6tc03771b.
Texto completo da fonteTi, Dan, Kun Gao, Zhi-Pan Zhang e Liang-Ti Qu. "Conjugated Polymers as Hole Transporting Materials for Solar Cells". Chinese Journal of Polymer Science 38, n.º 5 (23 de dezembro de 2019): 449–58. http://dx.doi.org/10.1007/s10118-020-2369-y.
Texto completo da fonteGuo, Yaxiong, Hongwei Lei, Liangbin Xiong, Borui Li e Guojia Fang. "An integrated organic–inorganic hole transport layer for efficient and stable perovskite solar cells". Journal of Materials Chemistry A 6, n.º 5 (2018): 2157–65. http://dx.doi.org/10.1039/c7ta09946k.
Texto completo da fonteKumar, Sudhir, Chih-Chia An, Snehasis Sahoo, Raimonda Griniene, Dmytro Volyniuk, Juozas V. Grazulevicius, Saulius Grigalevicius e Jwo-Huei Jou. "Correction: Solution-processable naphthalene and phenyl substituted carbazole core based hole transporting materials for efficient organic light-emitting diodes". Journal of Materials Chemistry C 5, n.º 44 (2017): 11649. http://dx.doi.org/10.1039/c7tc90170d.
Texto completo da fonteStratakis, Emmanuel, Kyriaki Savva, Dimitrios Konios, Constantinos Petridis e Emmanuel Kymakis. "Improving the efficiency of organic photovoltaics by tuning the work function of graphene oxide hole transporting layers". Nanoscale 6, n.º 12 (2014): 6925–31. http://dx.doi.org/10.1039/c4nr01539h.
Texto completo da fonteShaikh, Azam M., Bharat K. Sharma, Sajeev Chacko e Rajesh M. Kamble. "Novel electroluminescent donor–acceptors based on dibenzo[a,c]phenazine as hole-transporting materials for organic electronics". New Journal of Chemistry 41, n.º 2 (2017): 628–38. http://dx.doi.org/10.1039/c6nj03553a.
Texto completo da fonteKalinowski, J., e K. Szybowska. "Photoconduction in the archetype organic hole transporting material TPD". Organic Electronics 9, n.º 6 (dezembro de 2008): 1032–39. http://dx.doi.org/10.1016/j.orgel.2008.08.006.
Texto completo da fonteYildirim, Onur, Matteo Bonomo, Nadia Barbero, Cesare Atzori, Bartolomeo Civalleri, Francesca Bonino, Guido Viscardi e Claudia Barolo. "Application of Metal-Organic Frameworks and Covalent Organic Frameworks as (Photo)Active Material in Hybrid Photovoltaic Technologies". Energies 13, n.º 21 (26 de outubro de 2020): 5602. http://dx.doi.org/10.3390/en13215602.
Texto completo da fonteLiu, Jian, Heng Zhang, Bingxue Wu, Lixue Sun, Yu Chen, Xueping Zong, Zhe Sun, Song Xue e Mao Liang. "Simple Yet Efficient: Arylamine‐Terminated Carbazole Donors for Organic Hole Transporting Materials". Solar RRL 5, n.º 12 (14 de outubro de 2021): 2100694. http://dx.doi.org/10.1002/solr.202100694.
Texto completo da fonteQiu, Yong, e Juan Qiao. "Photostability and morphological stability of hole transporting materials used in organic electroluminescence". Thin Solid Films 372, n.º 1-2 (setembro de 2000): 265–70. http://dx.doi.org/10.1016/s0040-6090(00)01007-5.
Texto completo da fonteGao, Z. Q., C. S. Lee, I. Bello e S. T. Lee. "White light electroluminescence from a hole-transporting layer of mixed organic materials". Synthetic Metals 111-112 (junho de 2000): 39–42. http://dx.doi.org/10.1016/s0379-6779(99)00434-8.
Texto completo da fonteHwang, Seok-Hwan, Young Kook Kim, Yoonhyun Kwak, Chang-Ho Lee, Jonghyuk Lee e Sungchul Kim. "Improved performance of organic light-emitting diodes using advanced hole-transporting materials". Synthetic Metals 159, n.º 23-24 (dezembro de 2009): 2578–83. http://dx.doi.org/10.1016/j.synthmet.2009.09.015.
Texto completo da fontePark, Jong-Yek, Jeong Mi Kim, Haejin Lee, Kwang-Youn Ko, Kyoung Soo Yook, Jun Yeob Lee e Yong Gu Baek. "Thermally stable triphenylene-based hole-transporting materials for organic light-emitting devices". Thin Solid Films 519, n.º 18 (julho de 2011): 5917–23. http://dx.doi.org/10.1016/j.tsf.2011.03.022.
Texto completo da fonteStampor, Waldemar, e Wojciech Mróz. "Electroabsorption in triphenylamine-based hole-transporting materials for organic light-emitting diodes". Chemical Physics 331, n.º 2-3 (janeiro de 2007): 261–69. http://dx.doi.org/10.1016/j.chemphys.2006.10.014.
Texto completo da fonteCho, Ho Young, Lee Soon Park, Yoon Soo Han, Younghwan Kwon e Jae-Yong Ham. "Organic Light-Emitting Devices Consisting ofN-Triarylamine-Based Hole Injecting/Transporting Materials". Molecular Crystals and Liquid Crystals 498, n.º 1 (25 de fevereiro de 2009): 314–22. http://dx.doi.org/10.1080/15421400802619735.
Texto completo da fonte