Literatura científica selecionada sobre o tema "Optoelectronic devices"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Optoelectronic devices".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Optoelectronic devices"
Miroshnichenko, Anna S., Vladimir Neplokh, Ivan S. Mukhin e Regina M. Islamova. "Silicone Materials for Flexible Optoelectronic Devices". Materials 15, n.º 24 (7 de dezembro de 2022): 8731. http://dx.doi.org/10.3390/ma15248731.
Texto completo da fonteKausar, Ayesha, Ishaq Ahmad, Malik Maaza, M. H. Eisa e Patrizia Bocchetta. "Polymer/Fullerene Nanocomposite for Optoelectronics—Moving toward Green Technology". Journal of Composites Science 6, n.º 12 (16 de dezembro de 2022): 393. http://dx.doi.org/10.3390/jcs6120393.
Texto completo da fonteSang, Xianhe, Yongfu Wang, Qinglin Wang, Liangrui Zou, Shunhao Ge, Yu Yao, Xueting Wang, Jianchao Fan e Dandan Sang. "A Review on Optoelectronical Properties of Non-Metal Oxide/Diamond-Based p-n Heterojunction". Molecules 28, n.º 3 (30 de janeiro de 2023): 1334. http://dx.doi.org/10.3390/molecules28031334.
Texto completo da fonteAlles, M. A., S. M. Kovalev e S. V. Sokolov. "Optoelectronic Defuzzification Devices". Физические основы приборостроения 1, n.º 3 (15 de setembro de 2012): 83–91. http://dx.doi.org/10.25210/jfop-1203-083091.
Texto completo da fonteBhattacharya, Pallab, e Lily Y. Pang. "Semiconductor Optoelectronic Devices". Physics Today 47, n.º 12 (dezembro de 1994): 64. http://dx.doi.org/10.1063/1.2808754.
Texto completo da fonteOsten, W. "Advanced Optoelectronic Devices". Optics & Laser Technology 31, n.º 8 (novembro de 1999): 613–14. http://dx.doi.org/10.1016/s0030-3992(00)00008-6.
Texto completo da fonteJerrard, H. G. "Picosecond optoelectronic devices". Optics & Laser Technology 18, n.º 2 (abril de 1986): 105. http://dx.doi.org/10.1016/0030-3992(86)90049-6.
Texto completo da fonteChapman, David. "Optoelectronic semiconductor devices". Microelectronics Journal 25, n.º 8 (novembro de 1994): 769. http://dx.doi.org/10.1016/0026-2692(94)90143-0.
Texto completo da fonteDjuris˘Ić, A. B., e W. K. Chan. "Organic Optoelectronic Devices". HKIE Transactions 11, n.º 2 (janeiro de 2004): 44–52. http://dx.doi.org/10.1080/1023697x.2004.10667955.
Texto completo da fonteVazhdaev, Konstantin, Marat Urakseev, Azamat Allaberdin e Kostantin Subkhankulov. "OPTOELECTRONIC DEVICES BASED ON DIFFRACTION GRATINGS FROM STANDING ELASTIC WAVES". Electrical and data processing facilities and systems 18, n.º 3-4 (2022): 151–58. http://dx.doi.org/10.17122/1999-5458-2022-18-3-4-151-158.
Texto completo da fonteTeses / dissertações sobre o assunto "Optoelectronic devices"
Thompson, Paul. "II-VI optoelectronic devices". Thesis, Heriot-Watt University, 1996. http://hdl.handle.net/10399/726.
Texto completo da fonteVaughan, John. "Optoelectronic devices for spectrochemical sensing". Thesis, University of Manchester, 2005. https://www.research.manchester.ac.uk/portal/en/theses/optoelectronic-devices-for-spectrochemical-sensing(a6ea9f13-f235-4920-b63e-51e64a402327).html.
Texto completo da fonteHiggins, Steven Paul. "Computer simulation of optoelectronic devices". Thesis, University of Essex, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.413634.
Texto completo da fonteShapira, Ofer Ph D. Massachusetts Institute of Technology. "Optical and optoelectronic fiber devices". Thesis, Massachusetts Institute of Technology, 2007. http://hdl.handle.net/1721.1/40511.
Texto completo da fonteIncludes bibliographical references (p. 111-119).
The ability to integrate materials with disparate electrical, thermal, and optical properties into a single fiber structure enabled the realization of fiber devices with diverse and complex functionalities. Amongst those, demonstrated first in our work, are the surface-emitting fiber laser, the hollow-core fiber amplifier, the thermally self-monitored high-power transmission fiber device, and the photo-detecting fiber-web based imaging system. This work presents the design, analysis, and characterization of those devices. It opens with a study of the transmission properties of the multimode hollow-core, photonic bandgap fiber constructed of a periodic multilayer cladding. A defect is then introduced into one of the cladding layers and the interaction between core and defect modes is investigated. The second chapter addresses the experimental problem encountered in many multimode waveguide applications: how to extract, and to some extent to control, the modal content of the field at the output of a waveguide. We developed a non-interferometric approach to achieve mode decomposition based on a modified phase retrieval algorithm that can yield the complete vectorial eigenmode content of any general waveguiding structure and demonstrated its validity experimentally. In the third chapter an active material is introduced into the hollow-core to form a surface-emitting fiber laser. A unique azimuthally anisotropic optical wave front results from the interplay between the cylindrical resonator, the anisotropic gain medium, and the linearly polarized axial pump. We show that the direction and polarization of the wave front are directly controlled by the pump polarization.
(cont.) In the last two chapters, a new type of fiber is presented, constructed of semiconducting, insulating, and conducting materials, which enables the integration of semiconductor devices into the fiber structure. In the first we demonstrate a fiber comprised of an optical transmission element designed for the transport of high power radiation and multiple thermal-detecting elements encompassing the hollow core for distributed temperature monitoring and real-time failure detection. In the second, we demonstrate optical imaging using large-area, three-dimensional optical-detector arrays, built from one-dimensional photodetecting optoelectronic fibers. Lensless imaging of an object is achieved using a phase retrieval algorithm.
by Ofer Shapira.
Ph.D.
Martins, Emiliano. "Light management in optoelectronic devices". Thesis, University of St Andrews, 2014. http://hdl.handle.net/10023/6133.
Texto completo da fonteLi, Guangru. "Nanostructured materials for optoelectronic devices". Thesis, University of Cambridge, 2016. https://www.repository.cam.ac.uk/handle/1810/263671.
Texto completo da fonteDibos, Alan. "Nanofabrication of Hybrid Optoelectronic Devices". Thesis, Harvard University, 2015. http://nrs.harvard.edu/urn-3:HUL.InstRepos:17463975.
Texto completo da fonteEngineering and Applied Sciences - Applied Physics
Tan, Eugene. "Design, fabrication and characterization of N-channel InGaAsP-InP based inversion channel technology devices (ICT) for optoelectronic integrated circuits (OEIC), double heterojunction optoelectronic switches (DOES), heterojunction field-effect transistors (HFET), bipolar inversion channel field-effect transistors (BICFET) and bipolar inversion channel phototransistors (BICPT)". Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape11/PQDD_0006/NQ42767.pdf.
Texto completo da fonteKim, Yong Hyun. "Alternative Electrodes for Organic Optoelectronic Devices". Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2013. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-113279.
Texto completo da fonteDie vorliegende Arbeit demonstriert einen Ansatz zur Verwirklichung von kostengünstigen, semi-transparenten, langzeitstabilen und effizienten Organischen Photovoltaik Zellen (OPV) und Organischen Leuchtdioden (OLEDs) durch die Nutzung innovativer Elektrodensysteme. Dazu werden leitfähige Polymere, dotiertes ZnO und Kohlenstoff-Nanoröhrchen eingesetzt. Diese alternativen Elektrodensysteme sind vielversprechende Kandidaten, um das konventionell genutzte Indium-Zinn-Oxid (ITO), welches aufgrund seines hohen Preises und spröden Materialverhaltens einen stark begrenz Faktor bei der Herstellung von kostengünstigen, flexiblen, organischen Bauelementen darstellt, zu ersetzten. Zunächst werden langzeitstabile, effiziente, ITO-freie Solarzellen und transparente OLEDs auf der Basis von Poly(3,4-ethylene-dioxythiophene):Poly(styrenesulfonate) (PEDOT:PSS) Elektroden beschrieben, welche mit Hilfe einer Lösungsmittel-Nachprozessierung und einer Optimierung der Bauelementstruktur hergestellt wurden. Zusätzlich wurde ein leistungsfähiges, internes Lichtauskopplungs-System für weiße OLEDs, basierend auf PEDOT:PSS-beschichteten Metalloxid-Nanostrukturen, entwickelt. Weiterhin werden hoch effiziente, ITO-freie OPV Zellen und OLEDs vorgestellt, bei denen mit verschiedenen nicht-metallischen Elementen dotierte ZnO Elektroden zur Anwendung kamen. Die optimierten ZnO Elektroden bieten im Vergleich zu unserem Laborstandard ITO eine signifikant verbesserte Effizienz. Abschließend werden semi-transparente OPV Zellen mit freistehenden Kohlenstoff-Nanoröhrchen als transparente Top-Elektrode vorgestellt. Die daraus resultierenden Zellen zeigen sehr niedrige Leckströme und eine zufriedenstellende Stabilität. In diesem Zusammenhang wurde auch verschiedene Kombinationen von Elektrodenmaterialen als Top- und Bottom-Elektrode für semi-transparente, ITO-freie OPV Zellen untersucht. Zusammengefasst bestätigen die Resultate, dass OPV und OLEDs basierend auf alternativen Elektroden vielversprechende Eigenschaften für die praktische Anwendung in der Herstellung von effizienten, kostengünstigen, flexiblen und semi-transparenten Bauelement besitzen
Yiu, Wai-kin, e 姚偉健. "Plasmonic enhancement of organic optoelectronic devices". Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2014. http://hdl.handle.net/10722/211120.
Texto completo da fontepublished_or_final_version
Physics
Master
Master of Philosophy
Livros sobre o assunto "Optoelectronic devices"
Dragoman, Daniela. Advanced optoelectronic devices. Berlin: Springer, 1999.
Encontre o texto completo da fonteMooney, William J. Optoelectronic devices and principles. Englewood Cliffs, N.J: Prentice Hall, 1991.
Encontre o texto completo da fontePiprek, Joachim, ed. Optoelectronic Devices. New York: Springer-Verlag, 2005. http://dx.doi.org/10.1007/b138826.
Texto completo da fonteBhattacharya, Pallab. Semiconductor optoelectronic devices. 2a ed. Upper Saddle River, NJ: Prentice Hall, 1997.
Encontre o texto completo da fonteDragoman, Daniela, e Mircea Dragoman. Advanced Optoelectronic Devices. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/978-3-662-03904-5.
Texto completo da fonteBhattacharya, P. K. Semiconductor optoelectronic devices. Englewood Cliffs, N.J: Prentice Hall, 1993.
Encontre o texto completo da fonteDragoman, Daniela. Advanced Optoelectronic Devices. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999.
Encontre o texto completo da fonteBhattacharya, Pallab. Semiconductor optoelectronic devices. Englewood Cliffs, N.J: Prentice Hall, 1994.
Encontre o texto completo da fonteBhattacharya, Pallab Kumar. Semiconductor optoelectronic devices. London: Prentice-Hall International, 1994.
Encontre o texto completo da fontePradhan, Basudev, ed. Perovskite Optoelectronic Devices. Cham: Springer International Publishing, 2024. http://dx.doi.org/10.1007/978-3-031-57663-8.
Texto completo da fonteCapítulos de livros sobre o assunto "Optoelectronic devices"
Panish, Morton B., e Henryk Temkin. "Optoelectronic Devices". In Gas Source Molecular Beam Epitaxy, 322–59. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-78127-8_10.
Texto completo da fonteLunardi, Leda, Sudha Mokkapati e Chennupati Jagadish. "Optoelectronic Devices". In Guide to State-of-the-Art Electron Devices, 265–74. Chichester, UK: John Wiley & Sons, Ltd, 2013. http://dx.doi.org/10.1002/9781118517543.ch20.
Texto completo da fonteEvstigneev, Mykhaylo. "Optoelectronic Devices". In Introduction to Semiconductor Physics and Devices, 275–304. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-08458-4_12.
Texto completo da fonteGupta, K. M., e Nishu Gupta. "Optoelectronic Devices". In Advanced Semiconducting Materials and Devices, 311–50. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-19758-6_9.
Texto completo da fontePatrick, Dale R., Stephen W. Fardo, Ray E. Richardson e Vigyan Vigs Chandra. "Optoelectronic Devices". In Electronic Devices and Circuit Fundamentals, Solution Manual, 76–86. New York: River Publishers, 2023. http://dx.doi.org/10.1201/9781003403272-13.
Texto completo da fontePatrick, Dale R., Stephen W. Fardo, Ray E. Richardson e Vigyan (Vigs) Chandra. "Optoelectronic Devices". In Electronic Devices and Circuit Fundamentals, 511–80. New York: River Publishers, 2023. http://dx.doi.org/10.1201/9781003393139-13.
Texto completo da fonteNelson, A. W. "Key Optoelectronic Devices". In Electronic Materials, 67–89. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4615-3818-9_7.
Texto completo da fonteLozes-Dupuy, F., H. Martinot e S. Bonnefont. "Optoelectronic semiconductor devices". In Perspectives for Parallel Optical Interconnects, 149–74. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-49264-8_7.
Texto completo da fonteBanerjee, Amal. "Semiconductor Optoelectronic Devices". In Synthesis Lectures on Engineering, Science, and Technology, 245–74. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-45750-0_14.
Texto completo da fonteDragoman, Daniela, e Mircea Dragoman. "Basic Concepts of Optoelectronic Devices". In Advanced Optoelectronic Devices, 1–60. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/978-3-662-03904-5_1.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Optoelectronic devices"
Ruden, P. P. "Materials-theory-based device modeling for III-nitride devices". In Optoelectronics '99 - Integrated Optoelectronic Devices, editado por Gail J. Brown e Manijeh Razeghi. SPIE, 1999. http://dx.doi.org/10.1117/12.344555.
Texto completo da fonteJabbour, Ghassan E., Bernard Kippelen, Neal R. Armstrong e Nasser Peyghambarian. "Organic electroluminescent devices: aluminum alkali-halide composite cathode for enhanced device performance". In Optoelectronics '99 - Integrated Optoelectronic Devices, editado por Bernard Kippelen. SPIE, 1999. http://dx.doi.org/10.1117/12.348413.
Texto completo da fonte"Optoelectronic devices". In 2011 69th Annual Device Research Conference (DRC). IEEE, 2011. http://dx.doi.org/10.1109/drc.2011.5994526.
Texto completo da fonte"Optoelectronic devices". In 2013 71st Annual Device Research Conference (DRC). IEEE, 2013. http://dx.doi.org/10.1109/drc.2013.6633854.
Texto completo da fonteJain, Nikhil, Himanshu Singhvi, Siddharth Jain e Rishabh upadhyay. "Optoelectronic devices". In ICWET '10: International Conference and Workshop on Emerging Trends in Technology. New York, NY, USA: ACM, 2010. http://dx.doi.org/10.1145/1741906.1742213.
Texto completo da fonteMcInerney, John G. "Bistable Optoelectronic Devices". In O-E/Fibers '87, editado por Theodore E. Batchman, Richard F. Carson, Robert L. Galawa e Henry J. Wojtunik. SPIE, 1987. http://dx.doi.org/10.1117/12.967536.
Texto completo da fonteKobayashi, Tetsuro, e Bong Young Lee. "Ultrafast Optoelectronic Devices". In 1991 International Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 1991. http://dx.doi.org/10.7567/ssdm.1991.s-e-2.
Texto completo da fonteTzolov, Velko P., Dazeng Feng, Stoyan Tanev e Z. Jan Jakubczyk. "Modeling tools for integrated and fiber optical devices". In Optoelectronics '99 - Integrated Optoelectronic Devices, editado por Giancarlo C. Righini e S. Iraj Najafi. SPIE, 1999. http://dx.doi.org/10.1117/12.343726.
Texto completo da fonteLaporta, Paolo, Stefano Longhi, Gino Sorbello, Stefano Taccheo e Cesare Svelto. "Erbium-ytterbium miniaturized laser devices for optical communications". In Optoelectronics '99 - Integrated Optoelectronic Devices, editado por Shibin Jiang e Seppo Honkanen. SPIE, 1999. http://dx.doi.org/10.1117/12.344495.
Texto completo da fonteHood, Patrick J., John C. Mastrangelo e Shaw H. Chen. "New materials technology for latching electro-optic devices". In Optoelectronics '99 - Integrated Optoelectronic Devices, editado por Julian P. G. Bristow e Suning Tang. SPIE, 1999. http://dx.doi.org/10.1117/12.344610.
Texto completo da fonteRelatórios de organizações sobre o assunto "Optoelectronic devices"
Kolodzey, James. SiGeC Optoelectronic Devices. Fort Belvoir, VA: Defense Technical Information Center, janeiro de 2000. http://dx.doi.org/10.21236/ada377834.
Texto completo da fonteKolodzey, James. SiGeC Alloys for Optoelectronic Devices. Fort Belvoir, VA: Defense Technical Information Center, agosto de 1995. http://dx.doi.org/10.21236/ada295007.
Texto completo da fonteGeorge, Nicholas. Optoelectronic Materials Devices Systems Research. Fort Belvoir, VA: Defense Technical Information Center, setembro de 1998. http://dx.doi.org/10.21236/ada358443.
Texto completo da fonteLaBounty, Christopher, Ali Shakouri, Patrick Abraham e John E. Bowers. Integrated Cooling for Optoelectronic Devices. Fort Belvoir, VA: Defense Technical Information Center, janeiro de 2000. http://dx.doi.org/10.21236/ada459476.
Texto completo da fonteMiller, David A. Ultrafast Quantum Well Optoelectronic Devices. Fort Belvoir, VA: Defense Technical Information Center, julho de 2000. http://dx.doi.org/10.21236/ada384413.
Texto completo da fontePeyghambarian, Nasser. (AASERT 95) Quantum Dot Devices and Optoelectronic Device Characterization. Fort Belvoir, VA: Defense Technical Information Center, maio de 1998. http://dx.doi.org/10.21236/ada379743.
Texto completo da fonteDing, Yujie J. Optoelectronic Devices Based on Novel Semiconductor Structures. Fort Belvoir, VA: Defense Technical Information Center, junho de 2006. http://dx.doi.org/10.21236/ada451063.
Texto completo da fonteHolub, M., D. Saha, D. Basu, P. Bhattacharya, L. Siddiqui e S. Datta. Spin-Based Devices for Magneto-Optoelectronic Integrated Circuits. Fort Belvoir, VA: Defense Technical Information Center, abril de 2009. http://dx.doi.org/10.21236/ada498345.
Texto completo da fonteChaung, S. L. Semiconductor Quantum-Well Lasers and Ultrafast Optoelectronic Devices. Fort Belvoir, VA: Defense Technical Information Center, setembro de 1996. http://dx.doi.org/10.21236/ada319314.
Texto completo da fonteLi, Baohua. Epitaxial Technologies for SiGeSn High Performance Optoelectronic Devices. Fort Belvoir, VA: Defense Technical Information Center, abril de 2015. http://dx.doi.org/10.21236/ad1012928.
Texto completo da fonte