Literatura científica selecionada sobre o tema "Optical tomography"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Optical tomography".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Optical tomography"
Kalnaya, O. A., e Yu S. Kurskoy. "Femtosecond Optical Tomography". Metrology and instruments, n.º 2 (21 de maio de 2020): 57–60. http://dx.doi.org/10.33955/2307-2180(2)2020.57-60.
Texto completo da fontePattan, Anusha U., e Shubhangi D.C. "Optical Tomography: The Survey on Optical Tomographic Techniques". International Journal of Advanced Research in Computer Science and Software Engineering 7, n.º 6 (30 de junho de 2017): 376–81. http://dx.doi.org/10.23956/ijarcsse/v7i6/0300.
Texto completo da fonteKumar Singh Anjali, Avanish. "Study of Clinical Evaluation of Glaucoma with Anterior Segment OCT (Optical Coherence Tomography) and Optic Nerve Head OCT (Optical Coherence Tomography)". International Journal of Science and Research (IJSR) 12, n.º 8 (5 de agosto de 2023): 627–32. http://dx.doi.org/10.21275/mr23728180729.
Texto completo da fonteHaisch, Christoph. "Optical Tomography". Annual Review of Analytical Chemistry 5, n.º 1 (19 de julho de 2012): 57–77. http://dx.doi.org/10.1146/annurev-anchem-062011-143138.
Texto completo da fonteCoufal, Hans. "Optical tomography?" Journal of Molecular Structure 347 (março de 1995): 285–91. http://dx.doi.org/10.1016/0022-2860(95)08551-6.
Texto completo da fonteLeutwyler, Kristin. "Optical Tomography". Scientific American 270, n.º 1 (janeiro de 1994): 147–49. http://dx.doi.org/10.1038/scientificamerican0194-147.
Texto completo da fonteDavis, Cole, e Wayne Kuang. "Optical coherence tomography: a novel modality for scrotal imaging". Canadian Urological Association Journal 3, n.º 4 (1 de maio de 2013): 319. http://dx.doi.org/10.5489/cuaj.1128.
Texto completo da fonteSoeda, Tsunenari, Shiro Uemura, Yoshihiko Saito, Kyoichi Mizuno e Ik-Kyung Jang. "Optical Coherence Tomography and Coronary Plaque Characterization". Journal of the Japanese Coronary Association 19, n.º 4 (2013): 307–14. http://dx.doi.org/10.7793/jcoron.19.033.
Texto completo da fonteC. Kharmyssov, C. Kharmyssov, M. W. L. Ko M. W. L. Ko e J. R. Kim J. R. Kim. "Automated segmentation of optical coherence tomography images". Chinese Optics Letters 17, n.º 1 (2019): 011701. http://dx.doi.org/10.3788/col201917.011701.
Texto completo da fonteRollins, Andrew M., e Joseph A. Izatt. "Optimal interferometer designs for optical coherence tomography". Optics Letters 24, n.º 21 (1 de novembro de 1999): 1484. http://dx.doi.org/10.1364/ol.24.001484.
Texto completo da fonteTeses / dissertações sobre o assunto "Optical tomography"
Xu, Weiming. "Offset Optical Coherence Tomography". Miami University / OhioLINK, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=miami1626870603439104.
Texto completo da fonteHuang, David. "Optical coherence tomography". Thesis, Massachusetts Institute of Technology, 1993. http://hdl.handle.net/1721.1/12675.
Texto completo da fonteMuscat, Sarah. "Optical coherence tomography". Thesis, Connect to e-thesis, 2003. http://theses.gla.ac.uk/630/.
Texto completo da fontePh.D. thesis submitted to the Department of Cardiovascular and Medical Sciences, Faculty of Medicine, University of Glasgow, 2003. Includes bibliographical references. Print version also available.
Nam, Haewon. "Ultrasound-modulated optical tomography". Texas A&M University, 2002. http://hdl.handle.net/1969/448.
Texto completo da fonteAkcay, Avni Ceyhun. "System design and optimization of optical coherence tomography". Doctoral diss., University of Central Florida, 2005. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/3586.
Texto completo da fontePh.D.
Optics and Photonics
Optics
Beitel, David. "Development of optical sources for optical coherence tomography". Thesis, McGill University, 2007. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=112557.
Texto completo da fonteFrom our experimental results with BBSs, we conclude that: (1) S/C-band output produced by the ASE emitted from two cascaded SOAs can be effectively extended with L-band output produced from the ASE of EDF; (2) An even broader output is achievable by: coupling the C-band and L-band outputs from a C-band SOA and EDF respectively and then amplifying the coupled output through an S-band SOA; (3) OCT imaging systems employing a light source with an S+C+L band output, with a center wavelength of approximately 1520 nm, can achieve high penetration depths in biological tissue.
From our experimental results with SFRLs, we conclude that: (1) Our two SFRL configurations generate picosecond pulses with reasonably narrow linewidths: 0.2--0.5 nm, and a sweeping range of about 50 nm; (2) These SFRLs can function as laser swept sources by setting the driving frequency of the RF generator to a periodic ramping function.
Behrooz, Ali. "Multiplexed fluorescence diffuse optical tomography". Diss., Georgia Institute of Technology, 2013. http://hdl.handle.net/1853/50401.
Texto completo da fonteWatson, Thomas. "Advances in optical projection tomography". Thesis, Imperial College London, 2017. http://hdl.handle.net/10044/1/58486.
Texto completo da fonteBateni, Vahid. "Isogeometric Approach to Optical Tomography". Diss., Virginia Tech, 2021. http://hdl.handle.net/10919/103863.
Texto completo da fonteDoctor of Philosophy
CT scans can save lives by allowing medical practitioners observe inside the patient's body without use of invasive surgery. However, they use high energy, potentially harmful x-rays to penetrate the organs. Due to limits of the mathematical algorithm used to reconstruct the 3D figure of the organs from the 2D x-ray images, many such images are required. Thus, a high level of x-ray exposure is necessary, which in periodic use can be harmful. Optical Tomography is a promising alternative which replaces x-rays with harmless Near-infrared (NIR) visible light. However, NIR photons have lower energy and tend to scatter before leaving the organs. Therefore, an additional algorithm is required to predict the distribution of light photons inside the body and their resulting 2D images. This is called the forward problem of Optical Tomography. Only then, like conventional CT scans, can another algorithm, called the inverse solution, reconstruct the 3D image by diminishing the difference between the predicted and registered images. Currently Optical Tomography cannot replace x-ray CT scans for most cases, due to shortcomings in the forward and inverse algorithms to handle real life usages. One obstacle stems from the fact that the forward problem must be solved numerous times for the inverse solution to reach the correct visualization. However, the current numerical method, Finite Element Method (FEM), has limitations in generating accurate solutions fast enough using economically viable computers. This limitation is mostly caused by the FEM's use of a simpler mathematical construct that requires more computations and is limited in accurately modelling the geometry and shape. This research implements the recently developed Isogeometric Analysis (IGA) and particularly IGA-based FEM to address this issue. The IGA-based FEM uses the same mathematical construct that is used to visualize the geometry for complicated applications such as some animations and computer games. They are also less complicated to apply due to much lower need for partitioning the domain. This study applies the IGA method to solve the forward problem of diffuse Optical Tomography and compare the accuracy and speed of IGA solution to the conventional FEM solution. The comparison reveals that while both methods can reach high accuracy, the IGA solutions are relatively more accurate. Also, while low accuracy FEM solutions have shorter runtimes, in solutions with required higher accuracy levels, the IGA proves to be considerably faster.
Armstrong, Julian. "Anatomical optical coherence tomography in the human upper airway". University of Western Australia. School of Electrical, Electronic and Computer Engineering, 2007. http://theses.library.uwa.edu.au/adt-WU2007.0022.
Texto completo da fonteLivros sobre o assunto "Optical tomography"
Bernardes, Rui, e José Cunha-Vaz, eds. Optical Coherence Tomography. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-27410-7.
Texto completo da fonteGirach, Aniz, e Robert C. Sergott, eds. Optical Coherence Tomography. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-24817-2.
Texto completo da fonteDrexler, Wolfgang, e James G. Fujimoto, eds. Optical Coherence Tomography. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-77550-8.
Texto completo da fonteSaxena, Sandeep. Optical coherence tomography. New York, NY: McGraw-Hill Medical, 2008.
Encontre o texto completo da fonte1942-, Meredith Travis A., e Saxena Sandeep, eds. Optical coherence tomography. New York, NY: McGraw-Hill, 2008.
Encontre o texto completo da fonte1964-, Bouma Brett E., e Tearney Guillermo J, eds. Handbook of optical coherence tomography. New York: Marcel Dekker, 2002.
Encontre o texto completo da fonteAkman, Ahmet, Atilla Bayer e Kouros Nouri-Mahdavi, eds. Optical Coherence Tomography in Glaucoma. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-94905-5.
Texto completo da fonteF, Steinert Roger, e Huang David, eds. Anterior segment optical coherence tomography. Thorofare, NJ: SLACK, 2008.
Encontre o texto completo da fonteF, Steinert Roger, e Huang David, eds. Anterior segment optical coherence tomography. Thorofare, NJ: SLACK, 2008.
Encontre o texto completo da fonteSteinert, Roger, e David Huang. Anterior Segment Optical Coherence Tomography. Boca Raton: CRC Press, 2024. http://dx.doi.org/10.1201/9781003522560.
Texto completo da fonteCapítulos de livros sobre o assunto "Optical tomography"
Chen, Zhongping. "Optical Coherence Tomography and Optical Doppler Tomography". In Encyclopedia of Microfluidics and Nanofluidics, 2529–35. New York, NY: Springer New York, 2015. http://dx.doi.org/10.1007/978-1-4614-5491-5_1155.
Texto completo da fonteChen, Zhongping. "Optical Coherence Tomography and Optical Doppler Tomography". In Encyclopedia of Microfluidics and Nanofluidics, 1–7. Boston, MA: Springer US, 2014. http://dx.doi.org/10.1007/978-3-642-27758-0_1155-2.
Texto completo da fonteFernández, Enrique Josua, e Pablo Artal. "Adaptive Optics in Ocular Optical Coherence Tomography". In Optical Coherence Tomography, 209–35. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-27410-7_10.
Texto completo da fonteZhou, Xuyang, e Zhengjun Liu. "Computerized Tomography". In Computational Optical Imaging, 101–34. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-97-1455-1_4.
Texto completo da fonteReif, Roberto, e Ruikang K. Wang. "Optical Microangiography Based on Optical Coherence Tomography". In Optical Coherence Tomography, 1373–97. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-06419-2_45.
Texto completo da fonteSahoo, Niroj Kumar, Priya R. Chandrasekaran, Ninan Jacob e Gemmy Cheung. "Optical Coherence Tomography and Optical Coherence Tomography-Angiography". In Ophthalmic Diagnostics, 361–85. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-97-0138-4_28.
Texto completo da fonteGao, Feng. "Diffuse Optical Tomography". In Advanced Topics in Science and Technology in China, 47–184. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-34303-2_3.
Texto completo da fonteHaeussler-Sinangin, Yesim, e Thomas Kohnen. "Optical Coherence Tomography". In Encyclopedia of Ophthalmology, 1–2. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-642-35951-4_407-4.
Texto completo da fonteNolte, David D. "Optical Coherence Tomography". In Optical Interferometry for Biology and Medicine, 297–306. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4614-0890-1_11.
Texto completo da fonteTsang, Stephen H., e Tarun Sharma. "Optical Coherence Tomography". In Advances in Experimental Medicine and Biology, 11–13. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-95046-4_3.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Optical tomography"
Chapman, Joseph C., Joseph M. Lukens, Bing Qi, Raphael C. Pooser e Nicholas A. Peters. "Bayesian Optical Heterodyne Tomography". In CLEO: QELS_Fundamental Science. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/cleo_qels.2022.ftu5a.5.
Texto completo da fonteBrunner, Elisabeth, Laura Kunze, Ursula Schmidt-Erfurth, Wolfgang Drexler, Andreas Pollreisz e Michael Pircher. "Focusing on anterior retinal layers with adaptive optics optical coherence tomography". In Optical Coherence Tomography. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/oct.2024.thd1.1.
Texto completo da fonteLin, Yuechuan, Nichaluk Leartprapun e Steven G. Adie. "High-throughput lightsheet optical manipulation and measurement with optical coherence tomography". In Optical Coherence Tomography. Washington, D.C.: OSA, 2020. http://dx.doi.org/10.1364/oct.2020.otu1e.4.
Texto completo da fonteWax, Adam. "Applications of Low Cost Optical Coherence Tomography". In Optical Coherence Tomography. Washington, D.C.: OSA, 2020. http://dx.doi.org/10.1364/oct.2020.om2e.2.
Texto completo da fonteBorycki, Dawid, Egidijus Auksorius, Piotr Węgrzyn e Maciej Wojtkowski. "Digital aberration correction in spatiotemporal optical coherence (STOC) imaging with coherent averaging". In Optical Coherence Tomography. Washington, D.C.: OSA, 2020. http://dx.doi.org/10.1364/oct.2020.om2e.4.
Texto completo da fonteSchmetterer, Leopold, Rene M. Werkmeister, Damon Wing Kee Wong, Bingyao Tan, Xinwen Yao, Jacqueline Chua e Gerhard Garhofer. "Quantitative Perfusion Measurements based on Doppler OCT and OCT Angiography". In Optical Coherence Tomography. Washington, D.C.: OSA, 2020. http://dx.doi.org/10.1364/oct.2020.om3e.1.
Texto completo da fonteAuksorius, Egidijus, Dawid Borycki e Maciej Wojtkowski. "Crosstalk-free in vivo imaging of a human retina with Fourier-domain full-field optical coherence tomography". In Optical Coherence Tomography. Washington, D.C.: OSA, 2020. http://dx.doi.org/10.1364/oct.2020.om3e.2.
Texto completo da fonteMujat, Mircea, Yang Lu, Gopi Maguluri, Nicusor Iftimia e R. Daniel Ferguson. "Isotropic Imaging of Retinal Structures with Multi-Channel AOSLO". In Optical Coherence Tomography. Washington, D.C.: OSA, 2020. http://dx.doi.org/10.1364/oct.2020.om3e.3.
Texto completo da fontePark, Hyeon-Cheol, Dawei Li, Runyu Tang, Cadman L. Leggett, Kenneth K. Wang e Xingde Li. "Ex vivo Human Esophageal Tissue Imaging with Ultrahigh-resolution OCT Capsule". In Optical Coherence Tomography. Washington, D.C.: OSA, 2020. http://dx.doi.org/10.1364/oct.2020.om4e.3.
Texto completo da fontePfister, Martin, Kornelia Schuetzenberger, Jasmin Schaefer, Hannes Stegmann, Martin Groeschl e René M. Werkmeister. "Identifying Diabetes in Mice using Optical Coherence Tomography Angiography Images of the Ears and Deep Learning". In Optical Coherence Tomography. Washington, D.C.: OSA, 2020. http://dx.doi.org/10.1364/oct.2020.om4e.4.
Texto completo da fonteRelatórios de organizações sobre o assunto "Optical tomography"
Xu, Min, e Melvin Lax. Time-Resolved Spectral Optical Breast Tomography. Fort Belvoir, VA: Defense Technical Information Center, junho de 2004. http://dx.doi.org/10.21236/ada427245.
Texto completo da fonteXu, Min, e Melvin Lax. Time-Resolved Spectral Optical Breast Tomography. Fort Belvoir, VA: Defense Technical Information Center, junho de 2003. http://dx.doi.org/10.21236/ada418030.
Texto completo da fonteYodh, Arjun G. Parallel, Rapid Diffuse Optical Tomography of Breast. Fort Belvoir, VA: Defense Technical Information Center, julho de 2001. http://dx.doi.org/10.21236/ada396638.
Texto completo da fonteRaymer, Michael G. Optical Field Reconstruction Using Phase-Space Tomography. Fort Belvoir, VA: Defense Technical Information Center, dezembro de 1999. http://dx.doi.org/10.21236/ada379215.
Texto completo da fontePiao, Daqing. Transrectal Near-Infrared Optical Tomography for Prostate Imaging. Fort Belvoir, VA: Defense Technical Information Center, março de 2009. http://dx.doi.org/10.21236/ada509892.
Texto completo da fonteAlfano, Robert R., e S. K. Gayen. Time-Resolved and Spectroscopic Three-Dimensional Optical Breast Tomography. Fort Belvoir, VA: Defense Technical Information Center, abril de 2008. http://dx.doi.org/10.21236/ada492472.
Texto completo da fonteAlfano, Robert R. Time-Resolved and Spectroscopic Three-Dimensional Optical Breast Tomography. Fort Belvoir, VA: Defense Technical Information Center, abril de 2006. http://dx.doi.org/10.21236/ada464218.
Texto completo da fonteFujimoto, James G. Advanced Technologies for Ultrahigh Resolution and Functional Optical Coherence Tomography. Fort Belvoir, VA: Defense Technical Information Center, abril de 2008. http://dx.doi.org/10.21236/ada482111.
Texto completo da fonteSuter, Melissa J. Electromagnetic-Optical Coherence Tomography Guidance of Transbronchial Solitary Pulmonary Nodule Biopsy. Fort Belvoir, VA: Defense Technical Information Center, julho de 2014. http://dx.doi.org/10.21236/ada614445.
Texto completo da fonteBennett, Hollis H., Goodson Jr., Curtis Ricky A. e John O. Computed-Tomography Imaging SpectroPolarimeter (CTISP) - A Passive Optical Sensor. Volume 2. Appendix B. Fort Belvoir, VA: Defense Technical Information Center, setembro de 2001. http://dx.doi.org/10.21236/ada399664.
Texto completo da fonte