Siga este link para ver outros tipos de publicações sobre o tema: Optical pattern recognition.

Artigos de revistas sobre o tema "Optical pattern recognition"

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Optical pattern recognition".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.

1

Solus, Dávid, Ľuboš Ovseník e Ján Turán. "Microchip Pattern Recognition Based on Optical Correlator". Acta Electrotechnica et Informatica 17, n.º 2 (1 de junho de 2017): 38–42. http://dx.doi.org/10.15546/aeei-2017-0014.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Kumar, Virendra. "Guest Editorial: Optical Pattern Recognition". Optical Engineering 29, n.º 9 (1990): 993. http://dx.doi.org/10.1117/12.150767.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Refregier, Ph. "Optical pattern recognition: optimal trade-off circular harmonic filters". Optics Communications 86, n.º 2 (novembro de 1991): 113–18. http://dx.doi.org/10.1016/0030-4018(91)90544-n.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Mahlab, Uri, H. John Caulfield e Joseph Shamir. "Genetic algorithm for optical pattern recognition". Optics Letters 16, n.º 9 (1 de maio de 1991): 648. http://dx.doi.org/10.1364/ol.16.000648.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Tozer, B. "Optical pattern recognition using holographic techniques". Optics & Laser Technology 20, n.º 5 (outubro de 1988): 274. http://dx.doi.org/10.1016/0030-3992(88)90032-1.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Mahlab, Uri, Michael Fleisher e Joseph Shamir. "Error probability in optical pattern recognition". Optics Communications 77, n.º 5-6 (julho de 1990): 415–22. http://dx.doi.org/10.1016/0030-4018(90)90137-i.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Parrish, E. A., A. O. Anyiwo e T. E. Batchman. "Integrated optical processors in pattern recognition". Pattern Recognition 18, n.º 3-4 (janeiro de 1985): 227–40. http://dx.doi.org/10.1016/0031-3203(85)90048-2.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Carhart, Gary W., Bret F. Draayer e Michael K. Giles. "Optical pattern recognition using bayesian classification". Pattern Recognition 27, n.º 4 (abril de 1994): 587–606. http://dx.doi.org/10.1016/0031-3203(94)90039-6.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Chang, Shoude, Philippe Gagné e Henri H. Arsenault. "Optical Intensity Filters for Pattern Recognition". Journal of Modern Optics 42, n.º 10 (outubro de 1995): 2041–50. http://dx.doi.org/10.1080/09500349514551771.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Liu, Hua-Kuang. "Self-amplified optical pattern-recognition technique". Applied Optics 31, n.º 14 (10 de maio de 1992): 2568. http://dx.doi.org/10.1364/ao.31.002568.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
11

Kumar, B. V. K. Vijaya, Z. Bahri e L. Hassebrook. "Correlation Filters for Optical Pattern Recognition". IETE Journal of Research 35, n.º 2 (março de 1989): 105–13. http://dx.doi.org/10.1080/03772063.1989.11436800.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
12

Yu, F. T. S., e D. A. Gregory. "Optical pattern recognition: architectures and techniques". Proceedings of the IEEE 84, n.º 5 (maio de 1996): 733–52. http://dx.doi.org/10.1109/5.488743.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
13

Thalmann, R. "Optical pattern recognition using holographic techniques". Optics and Lasers in Engineering 11, n.º 3 (janeiro de 1989): 217–19. http://dx.doi.org/10.1016/0143-8166(89)90032-8.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
14

Lee, Minhoon, Hobin Kim, Mikyeong Moon e Seung-Min Park. "Computer-Vision-Based Advanced Optical Music Recognition System". Journal of Computational and Theoretical Nanoscience 18, n.º 5 (1 de maio de 2021): 1345–51. http://dx.doi.org/10.1166/jctn.2021.9626.

Texto completo da fonte
Resumo:
Computer vision is an artificial intelligence technology that studies techniques for extracting information from images. Several studies have been performed to identify and edit music scores using computer vision. This study proposes a system to identify musical notes and print arranged music. Music is produced by general rules; consequently, the components of music have specific patterns. There are four approaches in pattern recognition that can be used classify images using patterns. Our proposed method of identifying music sheets is as follows. Several pretreatment processes (image binary, noise and staff elimination, image resizing) are performed to aid the identification. The components of the music sheet are identified by statistical pattern recognition. Applying an artificial intelligence model (Markov chain) to extracted music data aids in arranging the data. From applying the pattern recognition technique, a recognition rate of 100% was shown for music sheets of low complexity. The components included in the recognition rate are signs, notes, and beats. However, there was a low recognition rate for some music sheet and can be addressed by adding a classification to the navigation process. To increase the recognition rate of the music sheet with intermediate complexity, it is necessary to refine the pre-processing process and pattern recognition algorithm. We will also apply neural network-based models to the arrangement process.
Estilos ABNT, Harvard, Vancouver, APA, etc.
15

Lee, Minhoon, Hobin Kim, Mikyeong Moon e Seung-Min Park. "Computer-Vision-Based Advanced Optical Music Recognition System". Journal of Computational and Theoretical Nanoscience 18, n.º 5 (1 de maio de 2021): 1345–51. http://dx.doi.org/10.1166/jctn.2021.9626.

Texto completo da fonte
Resumo:
Computer vision is an artificial intelligence technology that studies techniques for extracting information from images. Several studies have been performed to identify and edit music scores using computer vision. This study proposes a system to identify musical notes and print arranged music. Music is produced by general rules; consequently, the components of music have specific patterns. There are four approaches in pattern recognition that can be used classify images using patterns. Our proposed method of identifying music sheets is as follows. Several pretreatment processes (image binary, noise and staff elimination, image resizing) are performed to aid the identification. The components of the music sheet are identified by statistical pattern recognition. Applying an artificial intelligence model (Markov chain) to extracted music data aids in arranging the data. From applying the pattern recognition technique, a recognition rate of 100% was shown for music sheets of low complexity. The components included in the recognition rate are signs, notes, and beats. However, there was a low recognition rate for some music sheet and can be addressed by adding a classification to the navigation process. To increase the recognition rate of the music sheet with intermediate complexity, it is necessary to refine the pre-processing process and pattern recognition algorithm. We will also apply neural network-based models to the arrangement process.
Estilos ABNT, Harvard, Vancouver, APA, etc.
16

Zang, Yiming, Yong Qian, Wei Liu, Yongpeng Xu, Gehao Sheng e Xiuchen Jiang. "A Novel Partial Discharge Detection Method Based on the Photoelectric Fusion Pattern in GIL". Energies 12, n.º 21 (28 de outubro de 2019): 4120. http://dx.doi.org/10.3390/en12214120.

Texto completo da fonte
Resumo:
Optical detection and ultrahigh frequency (UHF) detection are two significant methods of partial discharge (PD) detection in the gas-insulated transmission lines (GIL), however, there is a phenomenon of signals loss when using two types of detections to monitor PD signals of different defects, such as needle defect and free particle defect. This makes the optical and UHF signals not correspond strictly to the actual PD signals, and therefore the characteristic information of optical PD patterns and UHF PD patterns is incomplete which reduces the accuracy of the pattern recognition. Therefore, an image fusion algorithm based on improved non-subsampled contourlet transform (NSCT) is proposed in this study. The optical pattern is fused with the UHF pattern to achieve the complementarity of the two detection methods, avoiding the PD signals loss of different defects. By constructing the experimental platform of optical-UHF integrated detection for GIL, phase-resolved partial discharge (PRPD) patterns of three defects were obtained. After that, the image fusion algorithm based on the local entropy and the phase congruency was used to produce the photoelectric fusion PD pattern. Before the pattern recognition, 28 characteristic parameters are extracted from the photoelectric fusion pattern, and then the dimension of the feature space is reduced to eight by the principal component analysis. Finally, three kinds of classifiers, including the linear discriminant analysis (LDA), support vector machine (SVM), and k-nearest neighbor (KNN), are used for the pattern recognition. The results show that the recognition rate of all the photoelectric fusion pattern under different classifiers is higher than that of optical and UHF patterns, up to the maximum of 95%. Moreover, the photoelectric fusion pattern not only greatly improves the recognition rate of the needle defect and the free particle defect, but the recognition accuracy of the floating defect is also slightly improved.
Estilos ABNT, Harvard, Vancouver, APA, etc.
17

Xu, Hai Yan, Zhuo Zhang e Xue Wu Zhang. "Signal Recognition Basing on Optical Fiber Vibration Sensor". Applied Mechanics and Materials 347-350 (agosto de 2013): 743–47. http://dx.doi.org/10.4028/www.scientific.net/amm.347-350.743.

Texto completo da fonte
Resumo:
Distributed optical fiber sensor can acquire the information of physical field along time and spatial continuous distribution. It plays an important role in long-distance oil and electricity transmission and security. In this paper, the author introduced the universal steps in triggering pattern recognition, which includes signal characteristics extracting by accurate endpoint detecting, templates establishing by training, and pattern matching. By training the samples acquired in the laboratory, three templates are established. And pattern matching had been done between templates and all the samples. The results show that, 87.5 percent of the samples are matched correctly with the triggering patterns they are belonging to.
Estilos ABNT, Harvard, Vancouver, APA, etc.
18

Tamee, Kreangsak, Khomyuth Chaiwong, Kriengsak Yothapakdee e Preecha P. Yupapin. "Fringe patterns generated by micro-optical sensors for pattern recognition". Artificial Cells, Nanomedicine, and Biotechnology 43, n.º 4 (22 de janeiro de 2014): 252–57. http://dx.doi.org/10.3109/21691401.2013.875034.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
19

NAGAE, Sadahiko. "Pattern Recognition by Optical Data Processing (3)". Journal of Graphic Science of Japan 20, n.º 2 (1986): 7–13. http://dx.doi.org/10.5989/jsgs.20.2_7.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
20

Patil, Aparna. "Optical Character Recognition Implementation using Pattern Matching". International Journal for Research in Applied Science and Engineering Technology 7, n.º 8 (31 de agosto de 2019): 1092–95. http://dx.doi.org/10.22214/ijraset.2019.8155.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
21

Liu, Hua-Kuang. "Bifurcating optical pattern recognition in photorefractive crystals". Optics Letters 18, n.º 1 (1 de janeiro de 1993): 60. http://dx.doi.org/10.1364/ol.18.000060.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
22

Chang, Shoude. "Invariant optical pattern recognition using calculus descriptors". Optical Engineering 33, n.º 12 (1 de dezembro de 1994): 4045. http://dx.doi.org/10.1117/12.183407.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
23

Mahlab, Uri, e Joseph Shamir. "Optical pattern recognition based on convex functions". Journal of the Optical Society of America A 8, n.º 8 (1 de agosto de 1991): 1233. http://dx.doi.org/10.1364/josaa.8.001233.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
24

Zalman, Gady, e Joseph Shamir. "Reducing error probability in optical pattern recognition". Journal of the Optical Society of America A 8, n.º 12 (1 de dezembro de 1991): 1866. http://dx.doi.org/10.1364/josaa.8.001866.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
25

Lhamon, Michael E. "Translation‐invariant optical pattern recognition without correlation". Optical Engineering 35, n.º 9 (1 de setembro de 1996): 2700. http://dx.doi.org/10.1117/1.600835.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
26

Casasent, David P., e Elizabeth C. Botha. "Knowledge In Optical Symbolic Pattern Recognition Processors". Optical Engineering 26, n.º 1 (1 de janeiro de 1987): 260134. http://dx.doi.org/10.1117/12.7974018.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
27

Srinivasan, Rajani, Jason Kinser, Marius Schamschula, Joseph Shamir e H. John Caulfield. "Optical syntactic pattern recognition by fuzzy scoring". Optics Letters 21, n.º 11 (1 de junho de 1996): 815. http://dx.doi.org/10.1364/ol.21.000815.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
28

Kober, V., V. Lashin, I. Moreno, J. Campos, L. P. Yaroslavsky e M. J. Yzuel. "Color component transformations for optical pattern recognition". Journal of the Optical Society of America A 14, n.º 10 (1 de outubro de 1997): 2656. http://dx.doi.org/10.1364/josaa.14.002656.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
29

Toyoda, Haruyoshi. "Pattern recognition system using optical analogue processing". Optics & Laser Technology 29, n.º 1 (fevereiro de 1997): xiii. http://dx.doi.org/10.1016/s0030-3992(97)88163-7.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
30

Rosen, Joseph, Tuvia Kotzer e Joseph Shamir. "Optical implementation of phase extraction pattern recognition". Optics Communications 83, n.º 1-2 (maio de 1991): 10–14. http://dx.doi.org/10.1016/0030-4018(91)90513-d.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
31

Cheng, Yih-Shyang. "Real-Time Shift-Invariant Optical Pattern Recognition". International Journal of High Speed Electronics and Systems 08, n.º 04 (dezembro de 1997): 733–48. http://dx.doi.org/10.1142/s0129156497000305.

Texto completo da fonte
Resumo:
Shift invariance is an asset of the VanderLugt correlator, from which the location of the identified object is automatically specified. The development of filters which possess two or three types of invariance (shift, rotation, size, and distortion) simultaneously is reviewed. Various real-time implementation of VanderLugt as well as joint-transform correlators by utilizing spatial light modulators are also reviewed.
Estilos ABNT, Harvard, Vancouver, APA, etc.
32

Caulfield, H. John, e David Armitage. "Adaptive resonance theory of optical pattern recognition". Applied Optics 28, n.º 19 (1 de outubro de 1989): 4060. http://dx.doi.org/10.1364/ao.28.004060.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
33

Metioui, A., e L. Leclerc. "Sidelobe reduction methods in optical pattern recognition". Journal of Optics 21, n.º 4 (julho de 1990): 161–70. http://dx.doi.org/10.1088/0150-536x/21/4/002.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
34

Casasent, D. "General-purpose optical pattern recognition image processors". Proceedings of the IEEE 82, n.º 11 (1994): 1724–34. http://dx.doi.org/10.1109/5.333750.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
35

Lejeune, Claude, e Yunlong Sheng. "Optoneural system for invariant pattern recognition". Canadian Journal of Physics 71, n.º 9-10 (1 de setembro de 1993): 405–9. http://dx.doi.org/10.1139/p93-063.

Texto completo da fonte
Resumo:
An optoneural system is developed for invariant pattern recognition. The system consists of an optical correlator and a neural network. The correlator uses Fourier–Mellin spatial filters (FMF) for feature extraction. The FMF yields an unique output pattern for an input object. The present method works only with one object present in the input scene. The optical features extracted from the output pattern are shift, scale, and rotation invariant and are used as input to the neural network. The neural network is a multilayer feedforward net with back-propagation learning rule. Because of substantial reduction of the dimension of feature vectors provided by optical FMF, the small neural network is simply simulated in a personal computer. Optical experimental results are shown.
Estilos ABNT, Harvard, Vancouver, APA, etc.
36

Grunnet-Jepsen, A., S. Tonda e V. Laude. "Convolution-kernel-based optimal trade-off filters for optical pattern recognition". Applied Optics 35, n.º 20 (10 de julho de 1996): 3874. http://dx.doi.org/10.1364/ao.35.003874.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
37

Wu, Cen, Xuelin Yang e Weisheng Hu. "Binary Pattern Recognition for High-Speed Optical Signal". Recent Patents on Electrical & Electronic Engineering 6, n.º 1 (1 de março de 2013): 55–62. http://dx.doi.org/10.2174/2213111611306010007.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
38

Horner, Joseph L. "Optical pattern recognition for validation and security verification". Optical Engineering 33, n.º 6 (1 de junho de 1994): 1752. http://dx.doi.org/10.1117/12.170736.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
39

Goldstein, Dennis H. "Phase-encoding input images for optical pattern recognition". Optical Engineering 33, n.º 6 (1 de junho de 1994): 1806. http://dx.doi.org/10.1117/12.171322.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
40

Ipson, S. S., W. Booth e K. F. Chang. "Coherent Optical Pattern Recognition Using Computer-Generated Holograms". International Journal of Electrical Engineering Education 28, n.º 4 (outubro de 1991): 322–30. http://dx.doi.org/10.1177/002072099102800406.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
41

Davis, Jeffrey A., Don M. Cottrell, Glenn W. Bach e Roger A. Lilly. "Phase-encoded binary filters for optical pattern recognition". Applied Optics 28, n.º 2 (15 de janeiro de 1989): 258. http://dx.doi.org/10.1364/ao.28.000258.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
42

Javidi, Bahram. "Guest Editorial: Special Section on Optical Pattern Recognition". Optical Engineering 33, n.º 6 (1 de junho de 1994): 1751. http://dx.doi.org/10.1117/12.181753.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
43

Wen, Zhiqing. "Fuzzy neural network for invariant optical pattern recognition". Optical Engineering 35, n.º 8 (1 de agosto de 1996): 2188. http://dx.doi.org/10.1117/1.600825.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
44

Liu, Yue. "Optical pattern recognition by extracting least substructuring elements". Optical Engineering 38, n.º 10 (1 de outubro de 1999): 1694. http://dx.doi.org/10.1117/1.602221.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
45

Lee, Sing H. "Optical Implementations Of Digital Algorithms For Pattern Recognition". Optical Engineering 25, n.º 1 (1 de janeiro de 1986): 250169. http://dx.doi.org/10.1117/12.7973781.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
46

Millán, M. S., J. Romero, M. J. Yzuel e M. Corbalán. "Optical pattern recognition based on color vision models". Optics Letters 20, n.º 16 (15 de agosto de 1995): 1722. http://dx.doi.org/10.1364/ol.20.001722.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
47

Hsu, Magnus T. L., Joachim Knittel, Jean-Francois Morizur, Hans-A. Bachor e Warwick P. Bowen. "Optical pattern recognition via adaptive spatial homodyne detection". Journal of the Optical Society of America A 27, n.º 12 (11 de novembro de 2010): 2583. http://dx.doi.org/10.1364/josaa.27.002583.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
48

Lin, Xin, e Junji Ohtsubo. "Terminal attractor optical associative memory for pattern recognition". Optics & Laser Technology 29, n.º 1 (fevereiro de 1997): xiii. http://dx.doi.org/10.1016/s0030-3992(97)88158-3.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
49

Camp, William O., e Jan Van der Spiegel. "A silicon VLSI optical sensor for pattern recognition". Sensors and Actuators A: Physical 43, n.º 1-3 (maio de 1994): 188–95. http://dx.doi.org/10.1016/0924-4247(93)00692-w.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
50

Lin, Xin, Masahiko Mori, Junji Ohtsubo e Masanobu Watanabe. "Terminal Attractor Optical Associative Memory for Pattern Recognition". Japanese Journal of Applied Physics 39, Part 1, No. 2B (28 de fevereiro de 2000): 908–11. http://dx.doi.org/10.1143/jjap.39.908.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Oferecemos descontos em todos os planos premium para autores cujas obras estão incluídas em seleções literárias temáticas. Contate-nos para obter um código promocional único!

Vá para a bibliografia