Literatura científica selecionada sobre o tema "Optical nanofibers"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Optical nanofibers".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Optical nanofibers"
Matic, Alexandre, Adrien Godet, Jacques Chrétien, Kien Phan-Huy e Jean-Charles Beugnot. "Optical nanofibers for signal delaying". EPJ Web of Conferences 266 (2022): 11008. http://dx.doi.org/10.1051/epjconf/202226611008.
Texto completo da fonteLi, Jinze, Xin Liu, Jiawei Xi, Li Deng, Yanxin Yang, Xiang Li e Hao Sun. "Recent Development of Polymer Nanofibers in the Field of Optical Sensing". Polymers 15, n.º 17 (31 de agosto de 2023): 3616. http://dx.doi.org/10.3390/polym15173616.
Texto completo da fonteLebedev N. M., Min'kov K. N., Shitikov A. E., Danilin A. N., Krasivskaya M. I., Lonshakov E. A., Gorelov I. K., Dmitriev N. Y. e Bilenko I. A. "Optimizing the production of single-mode optical microfibers for coherent microoptics". Technical Physics 92, n.º 6 (2022): 723. http://dx.doi.org/10.21883/tp.2022.06.54419.30-22.
Texto completo da fonteAsriani, Asriani, e Iman Santoso. "Reduced Graphene Oxide/Polyvinyl Alcohol Nanofibers Fabricated by Electrospinning Technique as An Ideal Candidate for Organic Solar Cell Devices". JPSE (Journal of Physical Science and Engineering) 6, n.º 1 (19 de maio de 2021): 10–18. http://dx.doi.org/10.17977/um024v6i12021p010.
Texto completo da fonteMorais, Michele Greque de, Christopher Stillings, Roland Dersch, Markus Rudisile, Patrícia Pranke, Jorge Alberto Vieira Costa e Joachim Wendorff. "Biofunctionalized Nanofibers UsingArthrospira(Spirulina) Biomass and Biopolymer". BioMed Research International 2015 (2015): 1–8. http://dx.doi.org/10.1155/2015/967814.
Texto completo da fonteVu, Thi Hong Nhung, Svetlana N. Morozkina, Roman O. Olekhnovich, Aleksandr V. Podshivalov e Mayya V. Uspenskaya. "Study on Fabrication and Properties of Polyvinyl Alcohol/Chitosan Nanofibers Created from Aqueous Solution with Acetic Acid and Ethanol by the Electrospinning Method". Polymers 16, n.º 23 (30 de novembro de 2024): 3393. https://doi.org/10.3390/polym16233393.
Texto completo da fonteBojarus, Ratchaneekorn, Tienthong Yuangkaew, Thawach Thammabut, Mati Horprathum, Papot Jaroenapibal e Napat Triroj. "Optical Absorption and Photoconversion Characteristics of WO3 Nanofiber Photoanodes Prepared by Electrospinning with Different Calcination Temperatures". Solid State Phenomena 324 (20 de setembro de 2021): 103–8. http://dx.doi.org/10.4028/www.scientific.net/ssp.324.103.
Texto completo da fonteSumetsky, Michael. "Optical micro/nanofibers: achievements and future directions". Photonics Insights 3, n.º 2 (2024): C03. http://dx.doi.org/10.3788/pi.2024.c03.
Texto completo da fonteIhn, Yong Sup, Zaeill Kim e Su-Yong Lee. "Optical Wave Guiding and Spectral Properties of Micro/Nanofibers Used for Quantum Sensing and Quantum Light Generation". Applied Sciences 10, n.º 2 (20 de janeiro de 2020): 715. http://dx.doi.org/10.3390/app10020715.
Texto completo da fonteOlvera Bernal, Rigel Antonio, Roman Olegovich Olekhnovich e Mayya Valerievna Uspenskaya. "Chitosan/PVA Nanofibers as Potential Material for the Development of Soft Actuators". Polymers 15, n.º 9 (25 de abril de 2023): 2037. http://dx.doi.org/10.3390/polym15092037.
Texto completo da fonteTeses / dissertações sobre o assunto "Optical nanofibers"
Khan, Saima N. "Electrospinning Polymer Nanofibers-Electrical and Optical Characterization". Ohio : Ohio University, 2007. http://www.ohiolink.edu/etd/view.cgi?ohiou1200600595.
Texto completo da fonteGouraud, Baptiste. "Optical nanofibers interfacing cold toms. A tool for quantum optics". Thesis, Paris 6, 2016. http://www.theses.fr/2016PA066026/document.
Texto completo da fonteWe built a new experiment using cold atoms interacting with the light guided by an optical nanofiber. We first developed a nanofiber manufacturing bench. By heating and stretching a commercial optical fiber, a silica cylinder of 400 nm diameter is obtained. The light guided in these nanofibers is strongly focused over the whole length and exhibits strong evanescent fields. We then prepared a vacuum chamber and the laser system necessary for the manipulation of cold atoms. After inserting a nanofiber amid a cloud of cold atoms, we observed the phenomenon of slow light under the conditions of electromagnetically induced transparency: the light guided by the fiber is slowed down to a speed 3000 times smaller than its usual speed. We also stored the light guided by an optical fiber. After several microseconds, the information stored as a collective atomic excitation could be retrieved in the fiber. We have shown that this optical memory works for light pulses containing less than one photon on average. This system may therefore be used as a quantum memory, an essential tool for future quantum communication networks. Finally, we trapped atoms in an array in the vicinity of the nanofiber thanks to the light guided by the latter. Compared to our first set of experiments, the resulting cloud has a longer lifetime (25 ms) and interacts more strongly with the guided light (OD ~ 100). This new system should allow to efficiently implement other quantum optics protocols, such as the generation of single photons, or the entanglement of two remote atomic ensembles
Antoine, Donley. "Optical Transparent Pmma Composite Reinforced By Coaxial Electrospun Pan Hollow Nanofibers". Thesis, University of North Texas, 2013. https://digital.library.unt.edu/ark:/67531/metadc271772/.
Texto completo da fonteWuttke, Christian [Verfasser]. "Thermal excitations of optical nanofibers measured with a fiber-integrated Fabry-Pérot cavity / Christian Wuttke". Mainz : Universitätsbibliothek Mainz, 2014. http://d-nb.info/1050966937/34.
Texto completo da fonteRavets, Sylvain. "Development of tools for quantum engineering using individual atoms : optical nanofibers and controlled Rydberg interactions". Thesis, Palaiseau, Institut d'optique théorique et appliquée, 2014. http://www.theses.fr/2014IOTA0019/document.
Texto completo da fonteMost platforms that are being developed to build quantum simulators do not satisfy simultaneously all the requirements necessary to implement useful quantum tasks. Robust systems can be constructed by combining the strengths of multiple approaches while hopefully compensating for their weaknesses. This thesis reports on the progress made on two different setups that are being developed toward this goal.The first part of this thesis focuses on a hybrid system of neutral atoms coupled to superconducting qubits that is under construction at the University of Maryland. Sub-wavelength diameter optical fibers allow confining an ensemble of cold atoms in the evanescent field surrounding the fiber, which makes them ideal for placing atoms near a superconducting surface. We have developed a tapered fiber fabrication apparatus, and measured an optical transmission in excess of 99.95% for the fundamental mode. We have also optimized tapered fibers that can support higher-order optical modes with high transmission, which may be useful for various optical potential geometries.The second part of this thesis focuses on a system of neutral atoms trapped in arrays of optical tweezers that has been developed at the Institut d’Optique. Placing the atoms in highly excited Rydberg states allows us to obtain strong interatomic interactions. Using two individual atoms, we have characterized the pairwise interactions in the van der Waals and resonant dipole-dipole interaction regimes, providing a direct observation of the coherent nature of the interaction. In a three-atom system, we have finally simulated the dynamics of an elementary spin chain
Jönsson, Martin. "Investigations of plasma-enhanced CVD growth of carbon nanotubes and potential applications /". Göteborg : Göteborg University, 2007. http://www.loc.gov/catdir/toc/fy1001/2007413998.html.
Texto completo da fonteAdetunji, Oludurotimi Oluwaseun. "The nature of electronic states in conducting polymer nano-networks". Columbus, Ohio : Ohio State University, 2008. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1206218304.
Texto completo da fonteTartari, Enrico. "Study of localized defect-bound excitonic transitions in TMD-WSe2 monolayers and evanescent coupling to tapered optical nanofibers". Master's thesis, Alma Mater Studiorum - Università di Bologna, 2020. http://amslaurea.unibo.it/22128/.
Texto completo da fonteDevadas, Suchitha. "Fabrication of Lignin-Based Nanofibers: Influence of Lignin Type, Blend Ratios, and Total Polymer Concentration". University of Dayton / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=dayton160831003121355.
Texto completo da fonteSubir, Kumar Biswas. "Optically Transparent Nanocellulose-Reinforced Composites via Pickering Emulsification". Kyoto University, 2019. http://hdl.handle.net/2433/244562.
Texto completo da fonteLivros sobre o assunto "Optical nanofibers"
Jönsson, Martin. Investigations of plasma-enhanced CVD growth of carbon nanotubes and potential applications. Göteborg: Göteborg University, 2007.
Encontre o texto completo da fonteCapítulos de livros sobre o assunto "Optical nanofibers"
Matsumoto, Hidetoshi, e Akihiko Tanioka. "Optical Nanofibers". In Encyclopedia of Polymeric Nanomaterials, 1–4. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-36199-9_111-1.
Texto completo da fonteMatsumoto, Hidetoshi, e Akihiko Tanioka. "Optical Nanofibers". In Encyclopedia of Polymeric Nanomaterials, 1445–47. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-642-29648-2_111.
Texto completo da fonteViter, Roman, e Igor Iatsunskyi. "Optical Spectroscopy for Characterization of Metal Oxide Nanofibers". In Handbook of Nanofibers, 1–35. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-42789-8_10-1.
Texto completo da fonteViter, Roman, e Igor Iatsunskyi. "Optical Spectroscopy for Characterization of Metal Oxide Nanofibers". In Handbook of Nanofibers, 523–56. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-319-53655-2_10.
Texto completo da fonteSumetsky, M. "Optical Micro/Nanofibers for Sensing Applications". In Integrated Analytical Systems, 337–75. New York, NY: Springer New York, 2009. http://dx.doi.org/10.1007/978-0-387-98063-8_13.
Texto completo da fonteAhmadkhani Khari, Fatemeh, Saeideh Gorji Kandi, Maryam Yousefzadeh e Farhad Panahi. "Optical Properties of PMMA Nanofibers with Different Fiber Diameters". In Eco-friendly and Smart Polymer Systems, 465–68. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-45085-4_113.
Texto completo da fonteCamposeo, A., M. Moffa e L. Persano. "Electrospun Fluorescent Nanofibers and Their Application in Optical Sensing". In Electrospinning for High Performance Sensors, 129–55. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-14406-1_6.
Texto completo da fonteKrauthauser, C., J. M. Deitzel, D. O'Brien e J. Hrycushko. "Optical Properties of Transparent Resins with Electrospun Polymer Nanofibers". In ACS Symposium Series, 353–69. Washington, DC: American Chemical Society, 2006. http://dx.doi.org/10.1021/bk-2006-0918.ch025.
Texto completo da fonteMatysiak, Wiktor, Tomasz Tański e Marta Zaborowska. "Analysis of the Optical Properties of PVP/ZnO Composite Nanofibers". In Properties and Characterization of Modern Materials, 43–49. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-1602-8_4.
Texto completo da fonteAoki, Takao. "Cavity Quantum Electrodynamics with Laser-Cooled Atoms and Optical Nanofibers". In Quantum Science and Technology, 265–88. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-6679-7_12.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Optical nanofibers"
Bashaiah, Elaganuru, Shashank Suman, Resmi M e Ramachandrarao Yalla. "Fabrication of Optical Nanofibers for Sensing Applications". In Frontiers in Optics, JD4A.15. Washington, D.C.: Optica Publishing Group, 2024. https://doi.org/10.1364/fio.2024.jd4a.15.
Texto completo da fonteAzzoune, Abderrahim, Maha Bouhadida, Théo Dampt, Laurent Divay, Mathieu Fauvel, Christian Larat, Jean-Charles Beugnot e Sylvie Lebrun. "Study of composite optical nanofibers for 2nd and 3rd order nonlinearities". In Nonlinear Photonics, NpTu2E.3. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/np.2024.nptu2e.3.
Texto completo da fonteSingh, Manmohan, Christian Zevallos-Delgado, Sajedeh Saeidi Fard, Adam C. Farsheed, Jeffrey D. Hartgerink e Kirill V. Larin. "Multimodal optical elastography for characterizing anisotropic self-assembling peptide nanofibers". In Optical Elastography and Tissue Biomechanics XII, editado por Kirill V. Larin e Giuliano Scarcelli, 51. SPIE, 2025. https://doi.org/10.1117/12.3044321.
Texto completo da fonteSahu, Subrat, Kali P. Nayak e Rajan Jha. "One-sided Slotted Photonic Crystal Nanofiber for Cavity QED". In CLEO: Applications and Technology, JW2A.63. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/cleo_at.2024.jw2a.63.
Texto completo da fonteChormaic, Síle Nic, Alexey Vylegzhanin, Zohreh Shahrabifarahani, Aswathy Raj, Ratnesh Kumar Gupta, Dylan Brown e Jesse L. Everett. "Hybrid Quantum Systems using Optical Nanofibers Integrated with Cold Rubidium Atoms". In Conference on Lasers and Electro-Optics/Pacific Rim. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/cleopr.2022.cthw3_01.
Texto completo da fonteTong, Limin. "Optical Microfibers and Nanofibers". In Specialty Optical Fibers. Washington, D.C.: OSA, 2012. http://dx.doi.org/10.1364/sof.2012.stu2f.1.
Texto completo da fontePraveen Kamath, Pramitha, Souvik Sil, Viet Giang Truong e Síle Nic Chormaic. "Particle manipulation using optical nanofibers". In Specialty Optical Fibres VIII, editado por Christian-Alexander Bunge, Kyriacos Kalli e Pavel Peterka. SPIE, 2024. http://dx.doi.org/10.1117/12.3012253.
Texto completo da fonteHakuta, Kohzo. "Quantum Photonics With Optical Nanofibers". In Asia Communications and Photonics Conference. Washington, D.C.: OSA, 2014. http://dx.doi.org/10.1364/acpc.2014.ath4c.1.
Texto completo da fonteMeng, Chao, e Limin Tong. "Graphene-doped Polymer Optical Nanofibers". In CLEO: QELS_Fundamental Science. Washington, D.C.: OSA, 2013. http://dx.doi.org/10.1364/cleo_qels.2013.qth1b.6.
Texto completo da fonteYe, Junjun, e Daoheng Sun. "Fabrication of electrospun nanofibers bundles". In 3rd International Symposium on Advanced Optical Manufacturing and Testing Technologies: Advanced Optical Manufacturing Technologies, editado por Li Yang, Yaolong Chen, Ernst-Bernhard Kley e Rongbin Li. SPIE, 2007. http://dx.doi.org/10.1117/12.783000.
Texto completo da fonte