Artigos de revistas sobre o tema "OOD generalization"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "OOD generalization".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Ye, Nanyang, Lin Zhu, Jia Wang, Zhaoyu Zeng, Jiayao Shao, Chensheng Peng, Bikang Pan, Kaican Li e Jun Zhu. "Certifiable Out-of-Distribution Generalization". Proceedings of the AAAI Conference on Artificial Intelligence 37, n.º 9 (26 de junho de 2023): 10927–35. http://dx.doi.org/10.1609/aaai.v37i9.26295.
Texto completo da fonteGwon, Kyungpil, e Joonhyuk Yoo. "Out-of-Distribution (OOD) Detection and Generalization Improved by Augmenting Adversarial Mixup Samples". Electronics 12, n.º 6 (16 de março de 2023): 1421. http://dx.doi.org/10.3390/electronics12061421.
Texto completo da fonteZhu, Lin, Xinbing Wang, Chenghu Zhou e Nanyang Ye. "Bayesian Cross-Modal Alignment Learning for Few-Shot Out-of-Distribution Generalization". Proceedings of the AAAI Conference on Artificial Intelligence 37, n.º 9 (26 de junho de 2023): 11461–69. http://dx.doi.org/10.1609/aaai.v37i9.26355.
Texto completo da fonteLiao, Yufan, Qi Wu e Xing Yan. "Invariant Random Forest: Tree-Based Model Solution for OOD Generalization". Proceedings of the AAAI Conference on Artificial Intelligence 38, n.º 12 (24 de março de 2024): 13772–81. http://dx.doi.org/10.1609/aaai.v38i12.29283.
Texto completo da fonteBai, Haoyue, Rui Sun, Lanqing Hong, Fengwei Zhou, Nanyang Ye, Han-Jia Ye, S. H. Gary Chan e Zhenguo Li. "DecAug: Out-of-Distribution Generalization via Decomposed Feature Representation and Semantic Augmentation". Proceedings of the AAAI Conference on Artificial Intelligence 35, n.º 8 (18 de maio de 2021): 6705–13. http://dx.doi.org/10.1609/aaai.v35i8.16829.
Texto completo da fonteShao, Youjia, Shaohui Wang e Wencang Zhao. "A Causality-Aware Perspective on Domain Generalization via Domain Intervention". Electronics 13, n.º 10 (11 de maio de 2024): 1891. http://dx.doi.org/10.3390/electronics13101891.
Texto completo da fonteSu, Hang, e Wei Wang. "An Out-of-Distribution Generalization Framework Based on Variational Backdoor Adjustment". Mathematics 12, n.º 1 (26 de dezembro de 2023): 85. http://dx.doi.org/10.3390/math12010085.
Texto completo da fonteZhang, Lily H., e Rajesh Ranganath. "Robustness to Spurious Correlations Improves Semantic Out-of-Distribution Detection". Proceedings of the AAAI Conference on Artificial Intelligence 37, n.º 12 (26 de junho de 2023): 15305–12. http://dx.doi.org/10.1609/aaai.v37i12.26785.
Texto completo da fonteYu, Runpeng, Hong Zhu, Kaican Li, Lanqing Hong, Rui Zhang, Nanyang Ye, Shao-Lun Huang e Xiuqiang He. "Regularization Penalty Optimization for Addressing Data Quality Variance in OoD Algorithms". Proceedings of the AAAI Conference on Artificial Intelligence 36, n.º 8 (28 de junho de 2022): 8945–53. http://dx.doi.org/10.1609/aaai.v36i8.20877.
Texto completo da fonteCao, Linfeng, Aofan Jiang, Wei Li, Huaying Wu e Nanyang Ye. "OoDHDR-Codec: Out-of-Distribution Generalization for HDR Image Compression". Proceedings of the AAAI Conference on Artificial Intelligence 36, n.º 1 (28 de junho de 2022): 158–66. http://dx.doi.org/10.1609/aaai.v36i1.19890.
Texto completo da fonteYu, Yemin, Luotian Yuan, Ying Wei, Hanyu Gao, Fei Wu, Zhihua Wang e Xinhai Ye. "RetroOOD: Understanding Out-of-Distribution Generalization in Retrosynthesis Prediction". Proceedings of the AAAI Conference on Artificial Intelligence 38, n.º 1 (24 de março de 2024): 374–82. http://dx.doi.org/10.1609/aaai.v38i1.27791.
Texto completo da fonteZhao, Xilong, Siyuan Bian, Yaoyun Zhang, Yuliang Zhang, Qinying Gu, Xinbing Wang, Chenghu Zhou e Nanyang Ye. "Domain Invariant Learning for Gaussian Processes and Bayesian Exploration". Proceedings of the AAAI Conference on Artificial Intelligence 38, n.º 15 (24 de março de 2024): 17024–32. http://dx.doi.org/10.1609/aaai.v38i15.29646.
Texto completo da fonteZou, Xin, e Weiwei Liu. "Coverage-Guaranteed Prediction Sets for Out-of-Distribution Data". Proceedings of the AAAI Conference on Artificial Intelligence 38, n.º 15 (24 de março de 2024): 17263–70. http://dx.doi.org/10.1609/aaai.v38i15.29673.
Texto completo da fonteChen, Ziliang, Yongsen Zheng, Zhao-Rong Lai, Quanlong Guan e Liang Lin. "Diagnosing and Rectifying Fake OOD Invariance: A Restructured Causal Approach". Proceedings of the AAAI Conference on Artificial Intelligence 38, n.º 10 (24 de março de 2024): 11471–79. http://dx.doi.org/10.1609/aaai.v38i10.29028.
Texto completo da fonteLi, Dasen, Zhendong Yin, Yanlong Zhao, Wudi Zhao e Jiqing Li. "MLFAnet: A Tomato Disease Classification Method Focusing on OOD Generalization". Agriculture 13, n.º 6 (29 de maio de 2023): 1140. http://dx.doi.org/10.3390/agriculture13061140.
Texto completo da fonteRen, Yifei, e Pouya Bashivan. "How well do models of visual cortex generalize to out of distribution samples?" PLOS Computational Biology 20, n.º 5 (31 de maio de 2024): e1011145. http://dx.doi.org/10.1371/journal.pcbi.1011145.
Texto completo da fonteBento, Nuno, Joana Rebelo, André V. Carreiro, François Ravache e Marília Barandas. "Exploring Regularization Methods for Domain Generalization in Accelerometer-Based Human Activity Recognition". Sensors 23, n.º 14 (19 de julho de 2023): 6511. http://dx.doi.org/10.3390/s23146511.
Texto completo da fonteXin, Shiji, Yifei Wang, Jingtong Su e Yisen Wang. "On the Connection between Invariant Learning and Adversarial Training for Out-of-Distribution Generalization". Proceedings of the AAAI Conference on Artificial Intelligence 37, n.º 9 (26 de junho de 2023): 10519–27. http://dx.doi.org/10.1609/aaai.v37i9.26250.
Texto completo da fonteZhai, Yuanzhao, Yiying Li, Zijian Gao, Xudong Gong, Kele Xu, Dawei Feng, Ding Bo e Huaimin Wang. "Optimistic Model Rollouts for Pessimistic Offline Policy Optimization". Proceedings of the AAAI Conference on Artificial Intelligence 38, n.º 15 (24 de março de 2024): 16678–86. http://dx.doi.org/10.1609/aaai.v38i15.29607.
Texto completo da fonteDong, Qishi, Fengwei Zhou, Ning Kang, Chuanlong Xie, Shifeng Zhang, Jiawei Li, Heng Peng e Zhenguo Li. "DAMix: Exploiting Deep Autoregressive Model Zoo for Improving Lossless Compression Generalization". Proceedings of the AAAI Conference on Artificial Intelligence 37, n.º 4 (26 de junho de 2023): 4250–58. http://dx.doi.org/10.1609/aaai.v37i4.25543.
Texto completo da fonteLavda, Frantzeska, e Alexandros Kalousis. "Semi-Supervised Variational Autoencoders for Out-of-Distribution Generation". Entropy 25, n.º 12 (14 de dezembro de 2023): 1659. http://dx.doi.org/10.3390/e25121659.
Texto completo da fonteSu, Hang, e Wei Wang. "Invariant Feature Learning Based on Causal Inference from Heterogeneous Environments". Mathematics 12, n.º 5 (27 de fevereiro de 2024): 696. http://dx.doi.org/10.3390/math12050696.
Texto completo da fonteJia, Tianrui, Haoyang Li, Cheng Yang, Tao Tao e Chuan Shi. "Graph Invariant Learning with Subgraph Co-mixup for Out-of-Distribution Generalization". Proceedings of the AAAI Conference on Artificial Intelligence 38, n.º 8 (24 de março de 2024): 8562–70. http://dx.doi.org/10.1609/aaai.v38i8.28700.
Texto completo da fonteDeng, Bin, e Kui Jia. "Counterfactual Supervision-Based Information Bottleneck for Out-of-Distribution Generalization". Entropy 25, n.º 2 (18 de janeiro de 2023): 193. http://dx.doi.org/10.3390/e25020193.
Texto completo da fonteDing, Kun, Haojian Zhang, Qiang Yu, Ying Wang, Shiming Xiang e Chunhong Pan. "Weak Distribution Detectors Lead to Stronger Generalizability of Vision-Language Prompt Tuning". Proceedings of the AAAI Conference on Artificial Intelligence 38, n.º 2 (24 de março de 2024): 1528–36. http://dx.doi.org/10.1609/aaai.v38i2.27918.
Texto completo da fonteChen, Zhe, Zhiquan Ding, Xiaoling Zhang, Xin Zhang e Tianqi Qin. "Improving Out-of-Distribution Generalization in SAR Image Scene Classification with Limited Training Samples". Remote Sensing 15, n.º 24 (17 de dezembro de 2023): 5761. http://dx.doi.org/10.3390/rs15245761.
Texto completo da fonteHe, Rundong, Yue Yuan, Zhongyi Han, Fan Wang, Wan Su, Yilong Yin, Tongliang Liu e Yongshun Gong. "Exploring Channel-Aware Typical Features for Out-of-Distribution Detection". Proceedings of the AAAI Conference on Artificial Intelligence 38, n.º 11 (24 de março de 2024): 12402–10. http://dx.doi.org/10.1609/aaai.v38i11.29132.
Texto completo da fonteBento, Nuno, Joana Rebelo, Marília Barandas, André V. Carreiro, Andrea Campagner, Federico Cabitza e Hugo Gamboa. "Comparing Handcrafted Features and Deep Neural Representations for Domain Generalization in Human Activity Recognition". Sensors 22, n.º 19 (27 de setembro de 2022): 7324. http://dx.doi.org/10.3390/s22197324.
Texto completo da fonteJia, Mengzhao, Can Xie e Liqiang Jing. "Debiasing Multimodal Sarcasm Detection with Contrastive Learning". Proceedings of the AAAI Conference on Artificial Intelligence 38, n.º 16 (24 de março de 2024): 18354–62. http://dx.doi.org/10.1609/aaai.v38i16.29795.
Texto completo da fonteJi, Yuanfeng, Lu Zhang, Jiaxiang Wu, Bingzhe Wu, Lanqing Li, Long-Kai Huang, Tingyang Xu et al. "DrugOOD: Out-of-Distribution Dataset Curator and Benchmark for AI-Aided Drug Discovery – a Focus on Affinity Prediction Problems with Noise Annotations". Proceedings of the AAAI Conference on Artificial Intelligence 37, n.º 7 (26 de junho de 2023): 8023–31. http://dx.doi.org/10.1609/aaai.v37i7.25970.
Texto completo da fonteYu, Shujian. "The Analysis of Deep Neural Networks by Information Theory: From Explainability to Generalization". Proceedings of the AAAI Conference on Artificial Intelligence 37, n.º 13 (26 de junho de 2023): 15462. http://dx.doi.org/10.1609/aaai.v37i13.26829.
Texto completo da fonteKim, Segwang, Hyoungwook Nam, Joonyoung Kim e Kyomin Jung. "Neural Sequence-to-grid Module for Learning Symbolic Rules". Proceedings of the AAAI Conference on Artificial Intelligence 35, n.º 9 (18 de maio de 2021): 8163–71. http://dx.doi.org/10.1609/aaai.v35i9.16994.
Texto completo da fonteAhmed, Faruk, e Aaron Courville. "Detecting Semantic Anomalies". Proceedings of the AAAI Conference on Artificial Intelligence 34, n.º 04 (3 de abril de 2020): 3154–62. http://dx.doi.org/10.1609/aaai.v34i04.5712.
Texto completo da fonteVasiliuk, Anton, Daria Frolova, Mikhail Belyaev e Boris Shirokikh. "Limitations of Out-of-Distribution Detection in 3D Medical Image Segmentation". Journal of Imaging 9, n.º 9 (18 de setembro de 2023): 191. http://dx.doi.org/10.3390/jimaging9090191.
Texto completo da fonteHong, Yining, Qing Li, Ran Gong, Daniel Ciao, Siyuan Huang e Song-Chun Zhu. "SMART: A Situation Model for Algebra Story Problems via Attributed Grammar". Proceedings of the AAAI Conference on Artificial Intelligence 35, n.º 14 (18 de maio de 2021): 13009–17. http://dx.doi.org/10.1609/aaai.v35i14.17538.
Texto completo da fonteFischer, Ian. "The Conditional Entropy Bottleneck". Entropy 22, n.º 9 (8 de setembro de 2020): 999. http://dx.doi.org/10.3390/e22090999.
Texto completo da fonteMoon, Seung Jun, Sangwoo Mo, Kimin Lee, Jaeho Lee e Jinwoo Shin. "MASKER: Masked Keyword Regularization for Reliable Text Classification". Proceedings of the AAAI Conference on Artificial Intelligence 35, n.º 15 (18 de maio de 2021): 13578–86. http://dx.doi.org/10.1609/aaai.v35i15.17601.
Texto completo da fonteChen, Muyi, Daling Wang, Shi Feng e Yifei Zhang. "Denoising in Representation Space via Data-Dependent Regularization for Better Representation". Mathematics 11, n.º 10 (16 de maio de 2023): 2327. http://dx.doi.org/10.3390/math11102327.
Texto completo da fonteChen, Zhengyu, Teng Xiao, Kun Kuang, Zheqi Lv, Min Zhang, Jinluan Yang, Chengqiang Lu, Hongxia Yang e Fei Wu. "Learning to Reweight for Generalizable Graph Neural Network". Proceedings of the AAAI Conference on Artificial Intelligence 38, n.º 8 (24 de março de 2024): 8320–28. http://dx.doi.org/10.1609/aaai.v38i8.28673.
Texto completo da fonteWu, Fan, Jinling Gao, Lanqing Hong, Xinbing Wang, Chenghu Zhou e Nanyang Ye. "G-NAS: Generalizable Neural Architecture Search for Single Domain Generalization Object Detection". Proceedings of the AAAI Conference on Artificial Intelligence 38, n.º 6 (24 de março de 2024): 5958–66. http://dx.doi.org/10.1609/aaai.v38i6.28410.
Texto completo da fonteZhang, Yu, Rongjie Huang, Ruiqi Li, JinZheng He, Yan Xia, Feiyang Chen, Xinyu Duan, Baoxing Huai e Zhou Zhao. "StyleSinger: Style Transfer for Out-of-Domain Singing Voice Synthesis". Proceedings of the AAAI Conference on Artificial Intelligence 38, n.º 17 (24 de março de 2024): 19597–605. http://dx.doi.org/10.1609/aaai.v38i17.29932.
Texto completo da fonteRamachandran, Sai Niranjan, Rudrabha Mukhopadhyay, Madhav Agarwal, C. V. Jawahar e Vinay Namboodiri. "Understanding the Generalization of Pretrained Diffusion Models on Out-of-Distribution Data". Proceedings of the AAAI Conference on Artificial Intelligence 38, n.º 13 (24 de março de 2024): 14767–75. http://dx.doi.org/10.1609/aaai.v38i13.29395.
Texto completo da fonteSinha, Samarth, Homanga Bharadhwaj, Anirudh Goyal, Hugo Larochelle, Animesh Garg e Florian Shkurti. "DIBS: Diversity Inducing Information Bottleneck in Model Ensembles". Proceedings of the AAAI Conference on Artificial Intelligence 35, n.º 11 (18 de maio de 2021): 9666–74. http://dx.doi.org/10.1609/aaai.v35i11.17163.
Texto completo da fonteXie, Yi, Jie Zhang, Shiqian Zhao, Tianwei Zhang e Xiaofeng Chen. "SAME: Sample Reconstruction against Model Extraction Attacks". Proceedings of the AAAI Conference on Artificial Intelligence 38, n.º 18 (24 de março de 2024): 19974–82. http://dx.doi.org/10.1609/aaai.v38i18.29974.
Texto completo da fonteCai, Tian, Li Xie, Shuo Zhang, Muge Chen, Di He, Amitesh Badkul, Yang Liu et al. "End-to-end sequence-structure-function meta-learning predicts genome-wide chemical-protein interactions for dark proteins". PLOS Computational Biology 19, n.º 1 (18 de janeiro de 2023): e1010851. http://dx.doi.org/10.1371/journal.pcbi.1010851.
Texto completo da fonteAcikgoz, Mehmet, Serkan Araci e Ugur Duran. "Some (p, q)-analogues of Apostol type numbers and polynomials". Acta et Commentationes Universitatis Tartuensis de Mathematica 23, n.º 1 (9 de agosto de 2019): 37–50. http://dx.doi.org/10.12697/acutm.2019.23.04.
Texto completo da fonteKuroda, Masamichi. "Monomial Generalized Almost Perfect Nonlinear Functions". International Journal of Foundations of Computer Science 31, n.º 03 (abril de 2020): 411–19. http://dx.doi.org/10.1142/s0129054120500161.
Texto completo da fonteBozin, Vladimir, e Miodrag Mateljevic. "Bounds for Jacobian of harmonic injective mappings in n-dimensional space". Filomat 29, n.º 9 (2015): 2119–24. http://dx.doi.org/10.2298/fil1509119b.
Texto completo da fonteWeinberger, David. "The Rise of Particulars: AI and the Ethics of Care". Philosophies 9, n.º 1 (16 de fevereiro de 2024): 26. http://dx.doi.org/10.3390/philosophies9010026.
Texto completo da fonteCrone, Lawrence J. "A Generalization of Odd and Even Functions". Mathematics Magazine 76, n.º 4 (1 de outubro de 2003): 308. http://dx.doi.org/10.2307/3219090.
Texto completo da fonte