Artigos de revistas sobre o tema "Omic data"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Omic data".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Oromendia, Ana, Dorina Ismailgeci, Michele Ciofii, Taylor Donnelly, Linda Bojmar, John Jyazbek, Arnaub Chatterjee, David Lyden, Kenneth H. Yu e David Paul Kelsen. "Error-free, automated data integration of exosome cargo protein data with extensive clinical data in an ongoing, multi-omic translational research study." Journal of Clinical Oncology 38, n.º 15_suppl (20 de maio de 2020): e16743-e16743. http://dx.doi.org/10.1200/jco.2020.38.15_suppl.e16743.
Texto completo da fonteUgidos, Manuel, Sonia Tarazona, José M. Prats-Montalbán, Alberto Ferrer e Ana Conesa. "MultiBaC: A strategy to remove batch effects between different omic data types". Statistical Methods in Medical Research 29, n.º 10 (4 de março de 2020): 2851–64. http://dx.doi.org/10.1177/0962280220907365.
Texto completo da fonteRappoport, Nimrod, e Ron Shamir. "NEMO: cancer subtyping by integration of partial multi-omic data". Bioinformatics 35, n.º 18 (30 de janeiro de 2019): 3348–56. http://dx.doi.org/10.1093/bioinformatics/btz058.
Texto completo da fonteCanela, Núria Anela. "A pioneering multi-omics data platform sheds light on the understanding of biological systems". Project Repository Journal 20, n.º 1 (4 de julho de 2024): 20–23. http://dx.doi.org/10.54050/prj2021863.
Texto completo da fonteLancaster, Samuel M., Akshay Sanghi, Si Wu e Michael P. Snyder. "A Customizable Analysis Flow in Integrative Multi-Omics". Biomolecules 10, n.º 12 (27 de novembro de 2020): 1606. http://dx.doi.org/10.3390/biom10121606.
Texto completo da fonteMorota, Gota. "30 Mutli-omic data integration in quantitative genetics". Journal of Animal Science 97, Supplement_2 (julho de 2019): 15. http://dx.doi.org/10.1093/jas/skz122.027.
Texto completo da fonteEscriba-Montagut, Xavier, Yannick Marcon, Augusto Anguita-Ruiz, Demetris Avraam, Jose Urquiza, Andrei S. Morgan, Rebecca C. Wilson, Paul Burton e Juan R. Gonzalez. "Federated privacy-protected meta- and mega-omics data analysis in multi-center studies with a fully open-source analytic platform". PLOS Computational Biology 20, n.º 12 (9 de dezembro de 2024): e1012626. https://doi.org/10.1371/journal.pcbi.1012626.
Texto completo da fonteMeunier, Lea, Guillaume Appe, Abdelkader Behdenna, Valentin Bernu, Helia Brull Corretger, Prashant Dhillon, Eleonore Fox et al. "Abstract 6209: From data disparity to data harmony: A comprehensive pan-cancer omics data collection". Cancer Research 84, n.º 6_Supplement (22 de março de 2024): 6209. http://dx.doi.org/10.1158/1538-7445.am2024-6209.
Texto completo da fonteQuackenbush, John. "Data standards for 'omic' science". Nature Biotechnology 22, n.º 5 (maio de 2004): 613–14. http://dx.doi.org/10.1038/nbt0504-613.
Texto completo da fonteBoekel, Jorrit, John M. Chilton, Ira R. Cooke, Peter L. Horvatovich, Pratik D. Jagtap, Lukas Käll, Janne Lehtiö, Pieter Lukasse, Perry D. Moerland e Timothy J. Griffin. "Multi-omic data analysis using Galaxy". Nature Biotechnology 33, n.º 2 (fevereiro de 2015): 137–39. http://dx.doi.org/10.1038/nbt.3134.
Texto completo da fonteKrittanawong, Chayakrit. "Big Data Analytics, the Microbiome, Host-omic and Bug-omic Data and Risk for Cardiovascular Disease". Heart, Lung and Circulation 27, n.º 3 (março de 2018): e26-e27. http://dx.doi.org/10.1016/j.hlc.2017.07.012.
Texto completo da fonteZhu, Shuwei, Wenping Wang, Wei Fang e Meiji Cui. "Autoencoder-assisted latent representation learning for survival prediction and multi-view clustering on multi-omics cancer subtyping". Mathematical Biosciences and Engineering 20, n.º 12 (2023): 21098–119. http://dx.doi.org/10.3934/mbe.2023933.
Texto completo da fonteDemirel, Habibe Cansu, Muslum Kaan Arici e Nurcan Tuncbag. "Computational approaches leveraging integrated connections of multi-omic data toward clinical applications". Molecular Omics 18, n.º 1 (2022): 7–18. http://dx.doi.org/10.1039/d1mo00158b.
Texto completo da fonteChu, Su, Mengna Huang, Rachel Kelly, Elisa Benedetti, Jalal Siddiqui, Oana Zeleznik, Alexandre Pereira et al. "Integration of Metabolomic and Other Omics Data in Population-Based Study Designs: An Epidemiological Perspective". Metabolites 9, n.º 6 (18 de junho de 2019): 117. http://dx.doi.org/10.3390/metabo9060117.
Texto completo da fonteChorna, Nataliya, e Filipa Godoy-Vitorino. "A Protocol for the Multi-Omic Integration of Cervical Microbiota and Urine Metabolomics to Understand Human Papillomavirus (HPV)-Driven Dysbiosis". Biomedicines 8, n.º 4 (8 de abril de 2020): 81. http://dx.doi.org/10.3390/biomedicines8040081.
Texto completo da fonteShah, Tariq, Jinsong Xu, Xiling Zou, Yong Cheng, Mubasher Nasir e Xuekun Zhang. "Omics Approaches for Engineering Wheat Production under Abiotic Stresses". International Journal of Molecular Sciences 19, n.º 8 (14 de agosto de 2018): 2390. http://dx.doi.org/10.3390/ijms19082390.
Texto completo da fonteAli, Johar, e Ome Kalsoom Afridi. "Omic or Multi-omics Approach Can Save The Mankind". Current Trends in OMICS 1, n.º 1 (16 de agosto de 2021): 01–07. http://dx.doi.org/10.32350/cto.11.01.
Texto completo da fontePan, Jianqiao, Baoshan Ma, Xiaoyu Hou, Chongyang Li, Tong Xiong, Yi Gong e Fengju Song. "The construction of transcriptional risk scores for breast cancer based on lightGBM and multiple omics data". Mathematical Biosciences and Engineering 19, n.º 12 (2022): 12353–70. http://dx.doi.org/10.3934/mbe.2022576.
Texto completo da fonteSangaralingam, Ajanthah, Abu Z. Dayem Ullah, Jacek Marzec, Emanuela Gadaleta, Ai Nagano, Helen Ross-Adams, Jun Wang, Nicholas R. Lemoine e Claude Chelala. "‘Multi-omic’ data analysis using O-miner". Briefings in Bioinformatics 20, n.º 1 (4 de agosto de 2017): 130–43. http://dx.doi.org/10.1093/bib/bbx080.
Texto completo da fonteMadrid-Márquez, Laura, Cristina Rubio-Escudero, Beatriz Pontes, Antonio González-Pérez, José C. Riquelme e Maria E. Sáez. "MOMIC: A Multi-Omics Pipeline for Data Analysis, Integration and Interpretation". Applied Sciences 12, n.º 8 (14 de abril de 2022): 3987. http://dx.doi.org/10.3390/app12083987.
Texto completo da fontevon der Heyde, Silvia, Margarita Krawczyk, Julia Bischof, Thomas Corwin, Peter Frommolt, Jonathan Woodsmith e Hartmut Juhl. "Clinically relevant multi-omic analysis of colorectal cancer." Journal of Clinical Oncology 38, n.º 15_suppl (20 de maio de 2020): e16063-e16063. http://dx.doi.org/10.1200/jco.2020.38.15_suppl.e16063.
Texto completo da fonteBadimon, Lina, Guiomar Mendieta, Soumaya Ben-Aicha e Gemma Vilahur. "Post-Genomic Methodologies and Preclinical Animal Models: Chances for the Translation of Cardioprotection to the Clinic". International Journal of Molecular Sciences 20, n.º 3 (25 de janeiro de 2019): 514. http://dx.doi.org/10.3390/ijms20030514.
Texto completo da fontePalsson, Bernhard, e Karsten Zengler. "The challenges of integrating multi-omic data sets". Nature Chemical Biology 6, n.º 11 (18 de outubro de 2010): 787–89. http://dx.doi.org/10.1038/nchembio.462.
Texto completo da fonteYurkovich, James T., e Bernhard O. Palsson. "Quantitative -omic data empowers bottom-up systems biology". Current Opinion in Biotechnology 51 (junho de 2018): 130–36. http://dx.doi.org/10.1016/j.copbio.2018.01.009.
Texto completo da fonteYang, Xiaoxi, Yuqi Wen, Xinyu Song, Song He e Xiaochen Bo. "Exploring the classification of cancer cell lines from multiple omic views". PeerJ 8 (18 de agosto de 2020): e9440. http://dx.doi.org/10.7717/peerj.9440.
Texto completo da fonteAlizadeh, Madeline, Natalia Sampaio Moura, Alyssa Schledwitz, Seema A. Patil, Jacques Ravel e Jean-Pierre Raufman. "Big Data in Gastroenterology Research". International Journal of Molecular Sciences 24, n.º 3 (27 de janeiro de 2023): 2458. http://dx.doi.org/10.3390/ijms24032458.
Texto completo da fonteO'Hara, Eóin, André L. A. Neves, Yang Song e Le Luo Guan. "The Role of the Gut Microbiome in Cattle Production and Health: Driver or Passenger?" Annual Review of Animal Biosciences 8, n.º 1 (15 de fevereiro de 2020): 199–220. http://dx.doi.org/10.1146/annurev-animal-021419-083952.
Texto completo da fonteYugi, Katsuyuki, Satoshi Ohno, James R. Krycer, David E. James e Shinya Kuroda. "Rate-oriented trans-omics: integration of multiple omic data on the basis of reaction kinetics". Current Opinion in Systems Biology 15 (junho de 2019): 109–20. http://dx.doi.org/10.1016/j.coisb.2019.04.005.
Texto completo da fonteBaena-Miret, Sergi, Ferran Reverter e Esteban Vegas. "A framework for block-wise missing data in multi-omics". PLOS ONE 19, n.º 7 (23 de julho de 2024): e0307482. http://dx.doi.org/10.1371/journal.pone.0307482.
Texto completo da fonteFutorian, David, Oren Fischman, Gali Arad, Nitzan Simchi, Omri Erez, Eran Seger, Rozanne Groen e Kirill Pevzner. "Abstract 5410: Predictive biomarker discovery method to bridge the gap between preclinical disease model dose-response and clinical trials". Cancer Research 83, n.º 7_Supplement (4 de abril de 2023): 5410. http://dx.doi.org/10.1158/1538-7445.am2023-5410.
Texto completo da fonteKemmo Tsafack, Ulrich Kemmo, Kwang Woo Ahn, Anne E. Kwitek e Chien-Wei Lin. "Meta-Analytic Gene-Clustering Algorithm for Integrating Multi-Omics and Multi-Study Data". Bioengineering 11, n.º 6 (8 de junho de 2024): 587. http://dx.doi.org/10.3390/bioengineering11060587.
Texto completo da fonteLi, Jin, Feng Chen, Hong Liang e Jingwen Yan. "MoNET: an R package for multi-omic network analysis". Bioinformatics 38, n.º 4 (25 de outubro de 2021): 1165–67. http://dx.doi.org/10.1093/bioinformatics/btab722.
Texto completo da fonteZhou, Juexiao, Siyuan Chen, Yulian Wu, Haoyang Li, Bin Zhang, Longxi Zhou, Yan Hu et al. "PPML-Omics: A privacy-preserving federated machine learning method protects patients’ privacy in omic data". Science Advances 10, n.º 5 (2 de fevereiro de 2024). http://dx.doi.org/10.1126/sciadv.adh8601.
Texto completo da fonteItai, Yonatan, Nimrod Rappoport e Ron Shamir. "Integration of gene expression and DNA methylation data across different experiments". Nucleic Acids Research, 3 de julho de 2023. http://dx.doi.org/10.1093/nar/gkad566.
Texto completo da fonteFlores, Javier E., Daniel M. Claborne, Zachary D. Weller, Bobbie-Jo M. Webb-Robertson, Katrina M. Waters e Lisa M. Bramer. "Missing data in multi-omics integration: Recent advances through artificial intelligence". Frontiers in Artificial Intelligence 6 (9 de fevereiro de 2023). http://dx.doi.org/10.3389/frai.2023.1098308.
Texto completo da fonteDrouard, Gabin, Juha Mykkänen, Jarkko Heiskanen, Joona Pohjonen, Saku Ruohonen, Katja Pahkala, Terho Lehtimäki et al. "Exploring machine learning strategies for predicting cardiovascular disease risk factors from multi-omic data". BMC Medical Informatics and Decision Making 24, n.º 1 (2 de maio de 2024). http://dx.doi.org/10.1186/s12911-024-02521-3.
Texto completo da fonteArehart, Christopher H., John D. Sterrett, Rosanna L. Garris, Ruth E. Quispe-Pilco, Christopher R. Gignoux, Luke M. Evans e Maggie A. Stanislawski. "Poly-omic risk scores predict inflammatory bowel disease diagnosis". mSystems, 14 de dezembro de 2023. http://dx.doi.org/10.1128/msystems.00677-23.
Texto completo da fonteDowning, Tim, e Nicos Angelopoulos. "A primer on correlation-based dimension reduction methods for multi-omics analysis". Journal of The Royal Society Interface 20, n.º 207 (outubro de 2023). http://dx.doi.org/10.1098/rsif.2023.0344.
Texto completo da fonteLiu, Yufang, Yongkai Chen, Haoran Lu, Wenxuan Zhong, Guo-Cheng Yuan e Ping Ma. "Orthogonal multimodality integration and clustering in single-cell data". BMC Bioinformatics 25, n.º 1 (25 de abril de 2024). http://dx.doi.org/10.1186/s12859-024-05773-y.
Texto completo da fonteHernández-Lemus, Enrique, e Soledad Ochoa. "Methods for multi-omic data integration in cancer research". Frontiers in Genetics 15 (19 de setembro de 2024). http://dx.doi.org/10.3389/fgene.2024.1425456.
Texto completo da fonteNardini, Christine, Jennifer Dent e Paolo Tieri. "Editorial: Multi-omic data integration". Frontiers in Cell and Developmental Biology 3 (7 de julho de 2015). http://dx.doi.org/10.3389/fcell.2015.00046.
Texto completo da fonteMuller, Efrat, Itamar Shiryan e Elhanan Borenstein. "Multi-omic integration of microbiome data for identifying disease-associated modules". Nature Communications 15, n.º 1 (23 de março de 2024). http://dx.doi.org/10.1038/s41467-024-46888-3.
Texto completo da fonteZhang, Qiang, Xiang-He Meng, Chuan Qiu, Hui Shen, Qi Zhao, Lan-Juan Zhao, Qing Tian, Chang-Qing Sun e Hong-Wen Deng. "Integrative analysis of multi-omics data to detect the underlying molecular mechanisms for obesity in vivo in humans". Human Genomics 16, n.º 1 (14 de maio de 2022). http://dx.doi.org/10.1186/s40246-022-00388-x.
Texto completo da fonteMadhumita, Archit Dwivedi e Sushmita Paul. "Recursive integration of synergised graph representations of multi-omics data for cancer subtypes identification". Scientific Reports 12, n.º 1 (17 de setembro de 2022). http://dx.doi.org/10.1038/s41598-022-17585-2.
Texto completo da fonteS, Kishaanth, Abishek VP, Lokeswari Y. Venkataramana e Venkata Vara Prasad D. "Enhancing Breast Cancer Survival Prognosis through Omic and Non-Omic Data Integration". Clinical Breast Cancer, agosto de 2024. http://dx.doi.org/10.1016/j.clbc.2024.08.009.
Texto completo da fonteKnepper, Mark A. "Utilizing Omic Data to Understand Integrative Physiology". Physiology, 12 de fevereiro de 2025. https://doi.org/10.1152/physiol.00045.2024.
Texto completo da fonteStassen, Shobana V., Gwinky G. K. Yip, Kenneth K. Y. Wong, Joshua W. K. Ho e Kevin K. Tsia. "Generalized and scalable trajectory inference in single-cell omics data with VIA". Nature Communications 12, n.º 1 (20 de setembro de 2021). http://dx.doi.org/10.1038/s41467-021-25773-3.
Texto completo da fonteHabowski, A. N., T. J. Habowski e M. L. Waterman. "GECO: gene expression clustering optimization app for non-linear data visualization of patterns". BMC Bioinformatics 22, n.º 1 (25 de janeiro de 2021). http://dx.doi.org/10.1186/s12859-020-03951-2.
Texto completo da fonteBornhofen, Elesandro, Dario Fè, Istvan Nagy, Ingo Lenk, Morten Greve, Thomas Didion, Christian S. Jensen, Torben Asp e Luc Janss. "Genetic architecture of inter-specific and -generic grass hybrids by network analysis on multi-omics data". BMC Genomics 24, n.º 1 (25 de abril de 2023). http://dx.doi.org/10.1186/s12864-023-09292-7.
Texto completo da fonteWang, Ruo Han, Jianping Wang e Shuai Cheng Li. "Probabilistic tensor decomposition extracts better latent embeddings from single-cell multiomic data". Nucleic Acids Research, 5 de julho de 2023. http://dx.doi.org/10.1093/nar/gkad570.
Texto completo da fonte