Literatura científica selecionada sobre o tema "Omic data"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Omic data".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Omic data"
Oromendia, Ana, Dorina Ismailgeci, Michele Ciofii, Taylor Donnelly, Linda Bojmar, John Jyazbek, Arnaub Chatterjee, David Lyden, Kenneth H. Yu e David Paul Kelsen. "Error-free, automated data integration of exosome cargo protein data with extensive clinical data in an ongoing, multi-omic translational research study." Journal of Clinical Oncology 38, n.º 15_suppl (20 de maio de 2020): e16743-e16743. http://dx.doi.org/10.1200/jco.2020.38.15_suppl.e16743.
Texto completo da fonteUgidos, Manuel, Sonia Tarazona, José M. Prats-Montalbán, Alberto Ferrer e Ana Conesa. "MultiBaC: A strategy to remove batch effects between different omic data types". Statistical Methods in Medical Research 29, n.º 10 (4 de março de 2020): 2851–64. http://dx.doi.org/10.1177/0962280220907365.
Texto completo da fonteRappoport, Nimrod, e Ron Shamir. "NEMO: cancer subtyping by integration of partial multi-omic data". Bioinformatics 35, n.º 18 (30 de janeiro de 2019): 3348–56. http://dx.doi.org/10.1093/bioinformatics/btz058.
Texto completo da fonteCanela, Núria Anela. "A pioneering multi-omics data platform sheds light on the understanding of biological systems". Project Repository Journal 20, n.º 1 (4 de julho de 2024): 20–23. http://dx.doi.org/10.54050/prj2021863.
Texto completo da fonteLancaster, Samuel M., Akshay Sanghi, Si Wu e Michael P. Snyder. "A Customizable Analysis Flow in Integrative Multi-Omics". Biomolecules 10, n.º 12 (27 de novembro de 2020): 1606. http://dx.doi.org/10.3390/biom10121606.
Texto completo da fonteMorota, Gota. "30 Mutli-omic data integration in quantitative genetics". Journal of Animal Science 97, Supplement_2 (julho de 2019): 15. http://dx.doi.org/10.1093/jas/skz122.027.
Texto completo da fonteEscriba-Montagut, Xavier, Yannick Marcon, Augusto Anguita-Ruiz, Demetris Avraam, Jose Urquiza, Andrei S. Morgan, Rebecca C. Wilson, Paul Burton e Juan R. Gonzalez. "Federated privacy-protected meta- and mega-omics data analysis in multi-center studies with a fully open-source analytic platform". PLOS Computational Biology 20, n.º 12 (9 de dezembro de 2024): e1012626. https://doi.org/10.1371/journal.pcbi.1012626.
Texto completo da fonteMeunier, Lea, Guillaume Appe, Abdelkader Behdenna, Valentin Bernu, Helia Brull Corretger, Prashant Dhillon, Eleonore Fox et al. "Abstract 6209: From data disparity to data harmony: A comprehensive pan-cancer omics data collection". Cancer Research 84, n.º 6_Supplement (22 de março de 2024): 6209. http://dx.doi.org/10.1158/1538-7445.am2024-6209.
Texto completo da fonteQuackenbush, John. "Data standards for 'omic' science". Nature Biotechnology 22, n.º 5 (maio de 2004): 613–14. http://dx.doi.org/10.1038/nbt0504-613.
Texto completo da fonteBoekel, Jorrit, John M. Chilton, Ira R. Cooke, Peter L. Horvatovich, Pratik D. Jagtap, Lukas Käll, Janne Lehtiö, Pieter Lukasse, Perry D. Moerland e Timothy J. Griffin. "Multi-omic data analysis using Galaxy". Nature Biotechnology 33, n.º 2 (fevereiro de 2015): 137–39. http://dx.doi.org/10.1038/nbt.3134.
Texto completo da fonteTeses / dissertações sobre o assunto "Omic data"
Guan, Xiaowei. "Bioinformatics Approaches to Heterogeneous Omic Data Integration". Case Western Reserve University School of Graduate Studies / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=case1340302883.
Texto completo da fonteXiao, Hui. "Network-based approaches for multi-omic data integration". Thesis, University of Cambridge, 2019. https://www.repository.cam.ac.uk/handle/1810/289716.
Texto completo da fonteZuo, Yiming. "Differential Network Analysis based on Omic Data for Cancer Biomarker Discovery". Diss., Virginia Tech, 2017. http://hdl.handle.net/10919/78217.
Texto completo da fontePh. D.
Tsai, Tsung-Heng. "Bayesian Alignment Model for Analysis of LC-MS-based Omic Data". Diss., Virginia Tech, 2014. http://hdl.handle.net/10919/64151.
Texto completo da fontePh. D.
Ruffalo, Matthew M. "Algorithms for Constructing Features for Integrated Analysis of Disparate Omic Data". Case Western Reserve University School of Graduate Studies / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=case1449238712.
Texto completo da fonteElhezzani, Najla Saad R. "New statistical methodologies for improved analysis of genomic and omic data". Thesis, King's College London (University of London), 2018. https://kclpure.kcl.ac.uk/portal/en/theses/new-statistical-methodologies-for-improved-analysis-of-genomic-and-omic-data(eb8d95f4-e926-4c54-984f-94d86306525a).html.
Texto completo da fonteElsheikh, Samar Salah Mohamedahmed. "Integration of multi-omic data and neuroimaging characteristics in studying brain related diseases". Doctoral thesis, Faculty of Health Sciences, 2020. http://hdl.handle.net/11427/32609.
Texto completo da fonteEhrenberger, Tobias. "Cancer systems biology : functional insights and therapeutic strategies for medulloblastoma from omic data integration". Thesis, Massachusetts Institute of Technology, 2019. https://hdl.handle.net/1721.1/123062.
Texto completo da fonteCataloged from PDF version of thesis.
Includes bibliographical references (pages 151-167).
Medulloblastoma (MB) is a chiefly pediatric cancer of the cerebellum that has been studied extensively using genomic, epigenomic, and transcriptomic data. It comprises at least four molecularly distinct subgroups: WNT, SHH, Group 3, and Group 4. Despite the detailed characterization of MB, many disease-driving events remain to be elucidated and therapeutic targets to be nominated. In this thesis, we describe three studies that contribute to a better understanding of this devastating disease: First, we describe a study that aims to fully describe the genomic landscape in the largest medulloblastoma cohort to date, using 491 sequenced MB tumors and 1,256 epigenetically analyzed cases. This work describes subgroup-specific driver alterations including previously unappreciated actionable targets; and, based on epigenetic data, identifies further heterogeneity within Group 3 and Group 4 tumors. Second, we focus on the proteomes and phospho-proteomes of 45 medulloblastoma samples.
We identified distinct pathways associated with two subsets of SHH tumors that showed robustly distinct proteomes, but similar transcriptomes, and found post-translational modifications of MYC that are associated with poor outcomes in Group 3 tumors. We also found kinases associated with subtypes and showed that inhibiting PRKDC sensitizes MYC-driven cells to radiation. This study shows that proteomics enables a more comprehensive, functional readout, providing a foundation for future therapeutic strategies. Third, we characterize the metabolomic space of MB on largely the same 45 tumors as used in the proteome-focused study. Here, we present preliminary insights from derived from integrative network and other analyses. We find that MB consensus subgroups are preserved in metabolic space, and that certain classes of metabolites are elevated in MYC-activated MB.
We also show that, similar to other cancers, a previously described gain-of-function mutation in IDH1 may cause elevated 2-hydroxyglutarate levels in MB. The work described in this thesis significantly enhances previous knowledge of medulloblastoma and its subgroups, and provides insights that may aid in the development of medulloblastoma therapies in the near future.
by Tobias Ehrenberger.
Ph. D.
Ph.D. Massachusetts Institute of Technology, Department of Biological Engineering
Curti, Nico. "Implementazione e benchmarking dell'algoritmo QDANet PRO per l'analisi di big data genomici". Master's thesis, Alma Mater Studiorum - Università di Bologna, 2016. http://amslaurea.unibo.it/12018/.
Texto completo da fonteArsenteva, Polina. "Statistical modeling and analysis of radio-induced adverse effects based on in vitro and in vivo data". Electronic Thesis or Diss., Bourgogne Franche-Comté, 2023. http://www.theses.fr/2023UBFCK074.
Texto completo da fonteIn this work we address the problem of adverse effects induced by radiotherapy on healthy tissues. The goal is to propose a mathematical framework to compare the effects of different irradiation modalities, to be able to ultimately choose those treatments that produce the minimal amounts of adverse effects for potential use in the clinical setting. The adverse effects are studied in the context of two types of data: in terms of the in vitro omic response of human endothelial cells, and in terms of the adverse effects observed on mice in the framework of in vivo experiments. In the in vitro setting, we encounter the problem of extracting key information from complex temporal data that cannot be treated with the methods available in literature. We model the radio-induced fold change, the object that encodes the difference in the effect of two experimental conditions, in the way that allows to take into account the uncertainties of measurements as well as the correlations between the observed entities. We construct a distance, with a further generalization to a dissimilarity measure, allowing to compare the fold changes in terms of all the important statistical properties. Finally, we propose a computationally efficient algorithm performing clustering jointly with temporal alignment of the fold changes. The key features extracted through the latter are visualized using two types of network representations, for the purpose of facilitating biological interpretation. In the in vivo setting, the statistical challenge is to establish a predictive link between variables that, due to the specificities of the experimental design, can never be observed on the same animals. In the context of not having access to joint distributions, we leverage the additional information on the observed groups to infer the linear regression model. We propose two estimators of the regression parameters, one based on the method of moments and the other based on optimal transport, as well as the estimators for the confidence intervals based on the stratified bootstrap procedure
Livros sobre o assunto "Omic data"
Azuaje, Francisco. Bioinformatics and biomarker discovery: "omic" data analysis for personalised medicine. Hoboken, NJ: John Wiley & Sons, 2010.
Encontre o texto completo da fonteAzuaje, Francisco. Bioinformatics and biomarker discovery: "omic" data analysis for personalised medicine. Hoboken, NJ: John Wiley & Sons, 2010.
Encontre o texto completo da fonteAzuaje, Francisco. Bioinformatics and biomarker discovery: "omic" data analysis for personalised medicine. Hoboken, NJ: John Wiley & Sons, 2010.
Encontre o texto completo da fonteMayer, Bernd, ed. Bioinformatics for Omics Data. Totowa, NJ: Humana Press, 2011. http://dx.doi.org/10.1007/978-1-61779-027-0.
Texto completo da fonteNing, Kang, ed. Methodologies of Multi-Omics Data Integration and Data Mining. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-8210-1.
Texto completo da fonteAlkhateeb, Abedalrhman, e Luis Rueda, eds. Machine Learning Methods for Multi-Omics Data Integration. Cham: Springer International Publishing, 2024. http://dx.doi.org/10.1007/978-3-031-36502-7.
Texto completo da fonteTieri, Paolo, Christine Nardini e Jennifer Elizabeth Dent, eds. Multi-omic Data Integration. Frontiers Media SA, 2015. http://dx.doi.org/10.3389/978-2-88919-648-7.
Texto completo da fonteRomualdi, Chiara, Enrica Calura, Davide Risso, Sampsa Hautaniemi e Francesca Finotello, eds. Multi-omic Data Integration in Oncology. Frontiers Media SA, 2020. http://dx.doi.org/10.3389/978-2-88966-151-0.
Texto completo da fonteData Analysis for Omic Sciences: Methods and Applications. Elsevier, 2018. http://dx.doi.org/10.1016/s0166-526x(18)x0004-x.
Texto completo da fonteJaumot, Joaquim, Carmen Bedia e Romà Tauler. Data Analysis for Omic Sciences: Methods and Applications. Elsevier, 2018.
Encontre o texto completo da fonteCapítulos de livros sobre o assunto "Omic data"
Saitou, Naruya. "Omic Data Collection". In Introduction to Evolutionary Genomics, 281–88. London: Springer London, 2013. http://dx.doi.org/10.1007/978-1-4471-5304-7_12.
Texto completo da fonteMason, Christopher E., Sandra G. Porter e Todd M. Smith. "Characterizing Multi-omic Data in Systems Biology". In Systems Analysis of Human Multigene Disorders, 15–38. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-8778-4_2.
Texto completo da fonteXu, Ying, Juan Cui e David Puett. "Omic Data, Information Derivable and Computational Needs". In Cancer Bioinformatics, 41–63. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4939-1381-7_2.
Texto completo da fonteZou, Yan. "Analyzing Multi-Omic Data with Integrative Platforms". In Integrative Bioinformatics, 377–86. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-6795-4_18.
Texto completo da fonteWarrenfeltz, Susanne, e Jessica C. Kissinger. "Accessing Cryptosporidium Omic and Isolate Data via CryptoDB.org". In Methods in Molecular Biology, 139–92. New York, NY: Springer New York, 2019. http://dx.doi.org/10.1007/978-1-4939-9748-0_10.
Texto completo da fonteReverter, Ferran, Esteban Vegas e Josep M. Oller. "Kernel Conditional Embeddings for Associating Omic Data Types". In Bioinformatics and Biomedical Engineering, 501–10. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-78723-7_43.
Texto completo da fonteKalapanulak, Saowalak, Treenut Saithong e Chinae Thammarongtham. "Networking Omic Data to Envisage Systems Biological Regulation". In Advances in Biochemical Engineering/Biotechnology, 121–41. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/10_2016_38.
Texto completo da fonteXu, Ying, Juan Cui e David Puett. "Elucidation of Cancer Drivers Through Comparative Omic Data Analyses". In Cancer Bioinformatics, 113–47. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4939-1381-7_5.
Texto completo da fonteWarrenfeltz, Susanne, e Jessica C. Kissinger. "Correction to: Accessing Cryptosporidium Omic and Isolate Data via CryptoDB.org". In Methods in Molecular Biology, C1. New York, NY: Springer New York, 2020. http://dx.doi.org/10.1007/978-1-4939-9748-0_22.
Texto completo da fonteBhattacharya, Surajit, e Heather Gordish-Dressman. "Guidelines for Bioinformatics and the Statistical Analysis of Omic Data". In Omics Approaches to Understanding Muscle Biology, 45–75. New York, NY: Springer US, 2019. http://dx.doi.org/10.1007/978-1-4939-9802-9_4.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Omic data"
Dey, Anirban, Kaushik Das Sharma, Pritha Bhattacharjee e Amitava Chatterjee. "A Voting based Assimilation Method for the Winning Neurons in Multi-Level SOM to Cluster the Convoluted Biomarkers of a Time Varying ‘Omic Data". In 2024 15th International Conference on Computing Communication and Networking Technologies (ICCCNT), 1–6. IEEE, 2024. http://dx.doi.org/10.1109/icccnt61001.2024.10725375.
Texto completo da fonteChong, Darren, Sonit Singh e Arcot Sowmya. "Spectrogram-Based Imagification Applying Deep Learning on Omics Data". In 2024 International Conference on Digital Image Computing: Techniques and Applications (DICTA), 477–84. IEEE, 2024. https://doi.org/10.1109/dicta63115.2024.00076.
Texto completo da fonteWolfgang, Seth, Skyler Ruiter, Marc Tunnell, Timothy Triche, Erin Carrier e Zachary DeBruine. "Value-Compressed Sparse Column (VCSC): Sparse Matrix Storage for Single-cell Omics Data". In 2024 IEEE International Conference on Big Data (BigData), 4952–58. IEEE, 2024. https://doi.org/10.1109/bigdata62323.2024.10825091.
Texto completo da fonteYao, Zhi-Cheng, Zi Liu, Wei-Zhong Lin e Xuan Xiao. "Clustering of Drug Side Effects Based on Multi-Omics Data". In 2024 2nd International Conference on Computer, Vision and Intelligent Technology (ICCVIT), 1–7. IEEE, 2024. https://doi.org/10.1109/iccvit63928.2024.10872593.
Texto completo da fonteLi, Qi, Jian-Wei Su e Wen-Hui Wu. "Clustering Single-Cell Multi-Omics Data with Graph Contrastive Learning". In 2024 International Conference on Machine Learning and Cybernetics (ICMLC), 239–44. IEEE, 2024. https://doi.org/10.1109/icmlc63072.2024.10935198.
Texto completo da fonteShi, Tianyi, Xiucai Ye, Dong Huang e Tetsuya Sakurai. "Selecting interpretable features for cancer subtyping on multi-omics data". In 2024 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), 1155–60. IEEE, 2024. https://doi.org/10.1109/bibm62325.2024.10821783.
Texto completo da fonteMishra, Soumya Ranjan, Sachikanta Dash, Sasmita Padhy, Naween Kumar e Yajnaseni Dash. "Integrating Multi-Omics Data for Advanced Diabetes Prediction and Understanding". In 2024 7th International Conference on Contemporary Computing and Informatics (IC3I), 1447–53. IEEE, 2024. https://doi.org/10.1109/ic3i61595.2024.10828970.
Texto completo da fonteCiortan, Madalina, e Matthieu Defrance. "Optimization algorithm for omic data subspace clustering". In CSBio2021: The 12th International Conference on Computational Systems-Biology and Bioinformatics. New York, NY, USA: ACM, 2021. http://dx.doi.org/10.1145/3486713.3486742.
Texto completo da fonteZuo, Yiming, Guoqiang Yu, Chi Zhang e Habtom W. Ressom. "A new approach for multi-omic data integration". In 2014 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). IEEE, 2014. http://dx.doi.org/10.1109/bibm.2014.6999157.
Texto completo da fonteGlass, Kimberly. "Using Multi-Omic Data to Model Gene Regulatory Networks". In Genetoberfest 2023. ScienceOpen, 2023. http://dx.doi.org/10.14293/gof.23.03.
Texto completo da fonteRelatórios de organizações sobre o assunto "Omic data"
Mitchell, Hugh, e Jennifer Kyle. Full Integration of Lipidomics Data into Multi-OMIC Functional Enrichment. Office of Scientific and Technical Information (OSTI), novembro de 2019. http://dx.doi.org/10.2172/1986189.
Texto completo da fonteHuang, Lei, Meng Song, Hui Shen, Huixiao Hong, Ping Gong, Deng Hong-Wen e Zhang Chaoyang. Deep learning methods for omics data imputation. Engineer Research and Development Center (U.S.), fevereiro de 2024. http://dx.doi.org/10.21079/11681/48221.
Texto completo da fonteIudicone, Daniele, e Marina Montresor. Omics community protocols. EuroSea, 2023. http://dx.doi.org/10.3289/eurosea_d3.19.
Texto completo da fonteSanderson, William. 'Omics and Big Data in Harmful Algal Bloom Research. Office of Scientific and Technical Information (OSTI), agosto de 2024. http://dx.doi.org/10.2172/2438485.
Texto completo da fonteHafen, Ryan, Lisa Bramer, Lee Ann McCue, Rachel Richardson e Chris Ebsch. MODE: The Multi-Omics Data Exploration Platform Phase I Final Technical Report. Office of Scientific and Technical Information (OSTI), dezembro de 2019. http://dx.doi.org/10.2172/1630300.
Texto completo da fonteWheeler, Travis. Machine learning approaches for integrating multi-omics data to expand microbiome annotation. Office of Scientific and Technical Information (OSTI), abril de 2024. http://dx.doi.org/10.2172/2331432.
Texto completo da fonteEngel, Jasper, e Hilko van der Voet. G-TwYST harmonisation of statistical methods for use of omics data in food safety assessment. Wageningen: Biometris, Wageningen University & Research, 2018. http://dx.doi.org/10.18174/455159.
Texto completo da fonteWrinn, Michael. Platform for efficient large-scale storage and analysis of multi-omics data in plant and microbial systems. Final Technical Report. Office of Scientific and Technical Information (OSTI), setembro de 2020. http://dx.doi.org/10.2172/1659436.
Texto completo da fonteSolis-Lemus, Claudia. Harnessing the power of big omics data: Novel statistical tools to study the role of microbial communities in fundamental biological processes. Office of Scientific and Technical Information (OSTI), janeiro de 2024. http://dx.doi.org/10.2172/2274956.
Texto completo da fonteHolmes, Rebecca, Keeley Blackie, Ilya Ivlev e Erick H. Turner. Enhancing Systematic Review Methods by Incorporating Unpublished Drug Trials. Agency for Healthcare Research and Quality (AHRQ), janeiro de 2025. https://doi.org/10.23970/ahrqepcwhitepaperenhancing.
Texto completo da fonte