Artigos de revistas sobre o tema "Ohmic sintering"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Ohmic sintering".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Fan, Ji Wei, Xiao Peng Li, Zhen Guo Zhang, Zhi Qiang Jiao, Xiang Yang Liu, Wen Jing Zhang, Poonsuk Poosimma e Robert Freer. "The Effects of Cu Dopant on the Microstructure and Non-Ohmic Electrical Properties of ZnO Varistors". Advanced Materials Research 343-344 (setembro de 2011): 160–65. http://dx.doi.org/10.4028/www.scientific.net/amr.343-344.160.
Texto completo da fonteZhou, Liqin, e Changkui Yu. "Sintering and properties of low-firing non-ohmic SrTiO3 ceramics". Journal of Materials Science 29, n.º 22 (novembro de 1994): 6055–59. http://dx.doi.org/10.1007/bf00366893.
Texto completo da fontePeng, Chengxin, Bingxiang Zhao, Xie Meng, Xiaofeng Ye, Ting Luo, Xianshuang Xin e Zhaoyin Wen. "Effect of NiO Addition on the Sintering and Electrochemical Properties of BaCe0.55Zr0.35Y0.1O3-δ Proton-Conducting Ceramic Electrolyte". Membranes 14, n.º 3 (27 de fevereiro de 2024): 61. http://dx.doi.org/10.3390/membranes14030061.
Texto completo da fonteRamírez, M. A., P. R. Bueno, E. Longo e J. A. Varela. "Conventional and microwave sintering of CaCu3Ti4O12/CaTiO3ceramic composites: non-ohmic and dielectric properties". Journal of Physics D: Applied Physics 41, n.º 15 (3 de julho de 2008): 152004. http://dx.doi.org/10.1088/0022-3727/41/15/152004.
Texto completo da fonteNahm, Choon-W. "Sintering temperature dependence on microstructure and non-ohmic properties of ZVMND ceramic semiconductors". Journal of Materials Science: Materials in Electronics 27, n.º 9 (24 de maio de 2016): 9520–25. http://dx.doi.org/10.1007/s10854-016-5003-6.
Texto completo da fonteEl-Hofy, M. "Non-Ohmic Behavior of Some ZnO Ceramic Defective Ions with Different Valences". Defect and Diffusion Forum 293 (agosto de 2009): 91–97. http://dx.doi.org/10.4028/www.scientific.net/ddf.293.91.
Texto completo da fonteGalizia, Pietro, e Carmen Galassi. "Electrophoretic Deposition of Bilayer Based on Sacrificial Titanium Dioxide and Lead Zirconate Titanate on Bare Silicon Wafer". Key Engineering Materials 654 (julho de 2015): 132–35. http://dx.doi.org/10.4028/www.scientific.net/kem.654.132.
Texto completo da fonteDubey, Pawan Kumar Kumar, Junsung Hong, Kevin X. Lee, Seraphim Belko, Ashish Aphale, Muhammad Anisur Rahman, Michael Reisert e Prabhakar Singh. "Electrical Conductivity and Electrochemical Performance of Pr Doped Ceria". ECS Transactions 111, n.º 6 (19 de maio de 2023): 91–103. http://dx.doi.org/10.1149/11106.0091ecst.
Texto completo da fonteLiu, Huan, Rong Zhu, Zhi Ping Zheng, Dong Xiang Zhou e Qiu Yun Fu. "Effect of Ni Electrode on the Characteristics of BaTiO3 Based PTCR Ceramics". Advanced Materials Research 415-417 (dezembro de 2011): 1000–1004. http://dx.doi.org/10.4028/www.scientific.net/amr.415-417.1000.
Texto completo da fonteSu, Yan Kuin, Fuh Shyang Juang e Kuang Jou Gan. "Ohmic Contacts of AuGeNi and Ag/AuGeNi to n-GaSb with Various Sintering Temperatures". Japanese Journal of Applied Physics 30, Part 1, No. 5 (15 de maio de 1991): 914–16. http://dx.doi.org/10.1143/jjap.30.914.
Texto completo da fonteMielcarek, Witold, Slavko Bernik e Krystyna Prociów. "Relations between the Morphology of ZnO Powders and the Electrical Performance of ZnO Varistors". Key Engineering Materials 336-338 (abril de 2007): 672–75. http://dx.doi.org/10.4028/www.scientific.net/kem.336-338.672.
Texto completo da fonteMuhoza, Sixbert P., e Michael D. Gross. "Creating and Preserving Nanoparticles during Co-Sintering of Solid Oxide Electrodes and Its Impact on Electrocatalytic Activity". Catalysts 11, n.º 9 (6 de setembro de 2021): 1073. http://dx.doi.org/10.3390/catal11091073.
Texto completo da fonteSchmitz, K. M., K. L. Jiao, R. Sharma, W. A. Anderson, G. Rajeswaran, L. R. Zheng, M. W. Cole e R. T. Lareau. "Microstructural analysis of Pd-based ohmic contacts to p-type GaAs". Journal of Materials Research 6, n.º 3 (março de 1991): 553–59. http://dx.doi.org/10.1557/jmr.1991.0553.
Texto completo da fonteHara, Masahiro, Takeaki Kitawaki, Kotaro Kuwahara, Hajime Tanaka, Mitsuaki Kaneko e Tsunenobu Kimoto. "(Invited) Tunneling Phenomena and Ohmic Contact Formation at Non-Alloyed Metal/Heavily-Doped SiC Interfaces". ECS Meeting Abstracts MA2024-02, n.º 36 (22 de novembro de 2024): 2520. https://doi.org/10.1149/ma2024-02362520mtgabs.
Texto completo da fonteOliveira, M. M., P. R. Bueno, M. R. Cassia-Santos, E. Longo e J. A. Varela. "Sensitivity of SnO2 non-ohmic behavior to the sintering process and to the addition of La2O3". Journal of the European Ceramic Society 21, n.º 9 (setembro de 2001): 1179–85. http://dx.doi.org/10.1016/s0955-2219(00)00329-0.
Texto completo da fonteChong, Haining, Huijun Yang, Weiyou Yang, Jinju Zheng, Minghui Shang, Zuobao Yang, Guodong Wei e Fengmei Gao. "SiC Nanowire Film Photodetectors: A Promising Candidate Toward High Temperature Photodetectors". Journal of Nanoscience and Nanotechnology 16, n.º 4 (1 de abril de 2016): 3796–801. http://dx.doi.org/10.1166/jnn.2016.11875.
Texto completo da fonteSahu, Rashmirekha, e Pawan Kumar. "Microstructure and electrical properties of microwave sintered Nb-doped NBT ceramics". Processing and Application of Ceramics 15, n.º 4 (2021): 395–402. http://dx.doi.org/10.2298/pac2104395s.
Texto completo da fonteHossein-Babaei, Faramarz, e S. Masoumi. "Electrical Resistance and Seebeck Effect in Undoped Polycrystalline Zinc Oxide". Key Engineering Materials 605 (abril de 2014): 185–88. http://dx.doi.org/10.4028/www.scientific.net/kem.605.185.
Texto completo da fonteKlitkou, Morten Phan, Albert Lopez de Moragas, Julian Taubmann, Peyman Khajavi, Stéven Pirou, Henrik Lund Frandsen e Peter Vang Hendriksen. "Development of Fuel Electrode Supported Solid Oxide Cell with Ni/CGO Active Layer". ECS Transactions 111, n.º 6 (19 de maio de 2023): 1407–13. http://dx.doi.org/10.1149/11106.1407ecst.
Texto completo da fonteKim, Junseok, Sahn Nahm, Jong-Ho Lee e Ho-il Ji. "A Simple Preparation of Electrolyte Powder for Stoichiometric Electrolyte in Protonic Ceramic Cells". ECS Meeting Abstracts MA2023-01, n.º 54 (28 de agosto de 2023): 283. http://dx.doi.org/10.1149/ma2023-0154283mtgabs.
Texto completo da fonteNahm, Choon-Woo. "Non-ohmic properties and impulse aging behavior of quaternary ZnO–V2O5–Mn3O4–Er2O3 semiconducting varistors with sintering processing". Materials Science in Semiconductor Processing 16, n.º 5 (outubro de 2013): 1308–15. http://dx.doi.org/10.1016/j.mssp.2013.04.003.
Texto completo da fonteUmamakeshvari, K., e S. C. Vella Durai. "A study of dielectrics generated by electro-less electrochemical method for semiconductor devices". Journal of Ovonic Research 18, n.º 2 (abril de 2022): 281–90. http://dx.doi.org/10.15251/jor.2022.182.281.
Texto completo da fonteNahm, Choon-W. "Non-ohmic effect and pulse aging behavior of V/Mn/Co/Bi/Dy co-doped ZnO semiconducting varistors with sintering processing". Materials Science in Semiconductor Processing 26 (outubro de 2014): 455–59. http://dx.doi.org/10.1016/j.mssp.2014.04.035.
Texto completo da fonteMiranda López, M. I., M. B. Hernández Hernández, B. S. Vera Barrios, A. Toxqui Teran e J. A. Aguilar Martinez. "A comparative study between the addition of nano and micro-particles of Co3O4 on the electrical and microstructural properties of a ceramic system based on SnO2". Revista Mexicana de Física 66, n.º 1 (28 de dezembro de 2019): 47. http://dx.doi.org/10.31349/revmexfis.66.47.
Texto completo da fonteDzunuzovic, Adis, Mirjana Vijatovic-Petrovic, Nikola Ilic, Jelena Bobic e Biljana Stojanovic. "Magneto-dielectric properties of ferrites and ferrite/ferroelectric multiferroic composites". Processing and Application of Ceramics 13, n.º 1 (2019): 104–13. http://dx.doi.org/10.2298/pac1901104d.
Texto completo da fonteTarutin, Artem, Julia Lyagaeva, Andrey Farlenkov, Sergey Plaksin, Gennady Vdovin, Anatoly Demin e Dmitry Medvedev. "A Reversible Protonic Ceramic Cell with Symmetrically Designed Pr2NiO4+δ-Based Electrodes: Fabrication and Electrochemical Features". Materials 12, n.º 1 (31 de dezembro de 2018): 118. http://dx.doi.org/10.3390/ma12010118.
Texto completo da fonteWatanabe, Konosuke, Hiroyuki Shimada, Aman Sharma, Masaya Fujioka, Yuki Yamaguchi, Katsuhiro Nomura, Hirofumi Sumi e Yasunobu Mizutani. "(Invited) Investigation of Co-Free Cathode Composited with Proton Conductors for Protonic Ceramic Fuel Cells with Yb-Doped BaZrO3 Electrolyte". ECS Meeting Abstracts MA2024-02, n.º 48 (22 de novembro de 2024): 3323. https://doi.org/10.1149/ma2024-02483323mtgabs.
Texto completo da fonteAdjah-Tetteh, Christabel, Yudong Wang, Zizhou He, Nengneng Xu e Xiao-Dong Zhou. "A Novel Process to Achieve Enhanced Mechanical and Electrical Properties of (Mn,Co)3O4-Based Electrical Contact Layer for Solid Oxide Cells". ECS Meeting Abstracts MA2024-02, n.º 67 (22 de novembro de 2024): 4653. https://doi.org/10.1149/ma2024-02674653mtgabs.
Texto completo da fonteLee, Wonyoung, Mingi Choi, Jaedeok Paik, Deokyoon Woo, Jaeyeob Lee, Seo Ju Kim e Jongseo Lee. "(Invited) Highly Performing Protonic Ceramic Fuel Cells with Stoichiometric Electrolytes". ECS Meeting Abstracts MA2022-02, n.º 47 (9 de outubro de 2022): 1736. http://dx.doi.org/10.1149/ma2022-02471736mtgabs.
Texto completo da fonteChoi, Mingi. "Protonic Ceramic Fuel Cells with Stoichiometric Electrolytes". ECS Meeting Abstracts MA2023-01, n.º 54 (28 de agosto de 2023): 271. http://dx.doi.org/10.1149/ma2023-0154271mtgabs.
Texto completo da fonteWon, Bo-Ram, Yo Han Kim, Hyeongwon Jeong, Dayoung Park e Jae-Ha Myung. "Highly Bendable Solid Oxide Fuel Cells Via Phase Control of Zirconia-Based Electrolyte". ECS Meeting Abstracts MA2024-02, n.º 48 (22 de novembro de 2024): 3466. https://doi.org/10.1149/ma2024-02483466mtgabs.
Texto completo da fonteSwatsitang, Ekaphan, Supinya Nijpanich, Sasitorn Putjuso e Thanin Putjuso. "Effect of sintering temperature and Sm3+ doping on the dielectric properties and non-Ohmic behavior of Ca1-1.5Sm Cu3Ti4.2O12 (x = 0.05 and 0.10) ceramics". Results in Physics 30 (novembro de 2021): 104896. http://dx.doi.org/10.1016/j.rinp.2021.104896.
Texto completo da fonteTanner, Cameron W. "(Invited) Grain Texture and Transport in Sintered Lithium Cobaltite". ECS Meeting Abstracts MA2023-02, n.º 46 (22 de dezembro de 2023): 2265. http://dx.doi.org/10.1149/ma2023-02462265mtgabs.
Texto completo da fonteJoo, Sung-Jae, JeongIn Jang, Ji-Hee Son, JongHo Park, Kim Kim e Bok-Ki Min. "A Simple Solid-State Direct Bonding Process for Fabrication of Ohmic Contacts on n-type Mg3Sb2-xBix-based Thermoelectric Materials". Korean Journal of Metals and Materials 63, n.º 1 (5 de janeiro de 2025): 60–67. https://doi.org/10.3365/kjmm.2025.63.1.60.
Texto completo da fontePaul, Tanmoy, e Yoed Tsur. "Influence of Isovalent ‘W’ Substitutions on the Structure and Electrical Properties of La2Mo2O9 Electrolyte for Intermediate-Temperature Solid Oxide Fuel Cells". Ceramics 4, n.º 3 (16 de setembro de 2021): 502–15. http://dx.doi.org/10.3390/ceramics4030037.
Texto completo da fontePibulchinda, Pattiya, e Scott A. Barnett. "(Invited) Studying Ni-YSZ Fuel Electrode Microstructure and Characteristics Using Symmetric Cells". ECS Meeting Abstracts MA2024-02, n.º 48 (22 de novembro de 2024): 3462. https://doi.org/10.1149/ma2024-02483462mtgabs.
Texto completo da fonteWang, Rong-Tsu, Horng-Yi Chang e Jung-Chang Wang. "An Overview on the Novel Core-Shell Electrodes for Solid Oxide Fuel Cell (SOFC) Using Polymeric Methodology". Polymers 13, n.º 16 (18 de agosto de 2021): 2774. http://dx.doi.org/10.3390/polym13162774.
Texto completo da fonteSong, Hyunghoon, Jaeseok Lee e Joongmyeon Bae. "Flatness Enhancement of Metal-Supported Solid Oxide Fuel Cells with Additional Compensation Layer". ECS Meeting Abstracts MA2023-01, n.º 54 (28 de agosto de 2023): 67. http://dx.doi.org/10.1149/ma2023-015467mtgabs.
Texto completo da fonteScheller, Maximilian, Axel Durdel, Johannes Kriegler, Alexander Frank e Andreas Jossen. "Simulation of Hybrid All-Solid-State Battery Performance Under Consideration of Ceramic-Polymer Phase Boundaries Using a Physicochemical Modelling Approach". ECS Meeting Abstracts MA2023-01, n.º 6 (28 de agosto de 2023): 992. http://dx.doi.org/10.1149/ma2023-016992mtgabs.
Texto completo da fonteOzaki, Ryota, Yohei Nagatomo, Ko Yoshiga, Tsutomu Kawabata, Mio Sakamoto, Masahiro Yasutake, Yuya Tachikawa, Junko Matsuda e Kazunari Sasaki. "Electrochemical Performance of Fuel-Electrode-Supported Reversible Solid Oxide Cells with a Ni-GDC Functional Layer". ECS Meeting Abstracts MA2024-02, n.º 48 (22 de novembro de 2024): 3452. https://doi.org/10.1149/ma2024-02483452mtgabs.
Texto completo da fonteAsghar, Muhammad Imran, e Peter D. Lund. "Hybrid Manufacturing of a Single-Layer Ceramic Fuel Cell Utilizing 3D Printing and Laser Scribing". ECS Meeting Abstracts MA2022-01, n.º 38 (7 de julho de 2022): 1677. http://dx.doi.org/10.1149/ma2022-01381677mtgabs.
Texto completo da fonteKuroha, Tomohiro, Kosuke Yamauchi, Yuichi Mikami e Yuji Okuyama. "Development of Protonic Ceramic Fuel Cell Using BaZr0.2Yb0.8O3-δ as the Electrolyte". ECS Meeting Abstracts MA2023-01, n.º 54 (28 de agosto de 2023): 225. http://dx.doi.org/10.1149/ma2023-0154225mtgabs.
Texto completo da fonteIoannidou, Evangelia, Stylianos G. Neophytides e Dimitris K. Niakolas. "(Digital Presentation) Au-Mo-Fe-Ni/CeO2(Gd2O3) As Potential Fuel Electrodes for Internal CO2 Reforming of CH4 in Single SOFCs". ECS Meeting Abstracts MA2023-01, n.º 54 (28 de agosto de 2023): 378. http://dx.doi.org/10.1149/ma2023-0154378mtgabs.
Texto completo da fonteSlomski, Heather S., Jonas Kaufman, Michael Dzara, Nicholas A. Strange, Jeremy Hartvigsen, Nicholas Kane, Micah Casteel et al. "(Invited) Early-Onset Degradation of (La,Sr)(Co,Fe)O3 in Solid Oxide Electrolysis Cells". ECS Meeting Abstracts MA2024-02, n.º 48 (22 de novembro de 2024): 3347. https://doi.org/10.1149/ma2024-02483347mtgabs.
Texto completo da fonteUchida, Hiroyuki, Eman H. Da'as, Hanako Nishino, Rajakumaran Ramachandran, Yosuke Takahashi e Yuuki Yamada. "Performances of Ni−SDC Hydrogen Electrodes in Reversible Operation Between SOEC and SOFC-Modes". ECS Meeting Abstracts MA2023-01, n.º 54 (28 de agosto de 2023): 115. http://dx.doi.org/10.1149/ma2023-0154115mtgabs.
Texto completo da fonteAfonin, Nikolay N., e Vera A. Logachova. "Reactive Interdiffusion of Components in a Non-Stoichiometric Two‑Layer System of Polycrystalline Titanium and Cobalt Oxides". Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases 22, n.º 4 (26 de novembro de 2020): 430–37. http://dx.doi.org/10.17308/kcmf.2020.22/3058.
Texto completo da fonteCibuzar, Gregory T. "Sintered Ohmic Contacts to GaAs". MRS Proceedings 240 (1991). http://dx.doi.org/10.1557/proc-240-443.
Texto completo da fonteSchmitz, K. M., K. L. Jiao, R. Sharama, W. A. Anderson, G. Rajeswaran, L. R. Zheng, M. W. Cole e R. T. Lareau. "Pd/Au:Be Ohmic Contacts to p-Type GaAs". MRS Proceedings 163 (1989). http://dx.doi.org/10.1557/proc-163-993.
Texto completo da fonteDeVoe, Emily, e Silvana Andreescu. "Review—Catalytic Electrochemical Biosensors for Dopamine: Design, Performance, and Healthcare Applications". ECS Sensors Plus, 1 de abril de 2024. http://dx.doi.org/10.1149/2754-2726/ad3950.
Texto completo da fonteFeng, Zhuoming, Katherine Elizabeth Hansen, Harish Bhandari e John Vohs. "Stabilization of Ni-YSZ Anodes in Solid Oxide Fuel Cells using an ALD-Grown Aluminum Titanate Interlayer". ECS Advances, 28 de março de 2024. http://dx.doi.org/10.1149/2754-2734/ad38cd.
Texto completo da fonte