Artigos de revistas sobre o tema "OGG1 inhibitors"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "OGG1 inhibitors".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Visnes, Torkild, Carlos Benítez-Buelga, Armando Cázares-Körner, Kumar Sanjiv, Bishoy M. F. Hanna, Oliver Mortusewicz, Varshni Rajagopal et al. "Targeting OGG1 arrests cancer cell proliferation by inducing replication stress". Nucleic Acids Research 48, n.º 21 (19 de novembro de 2020): 12234–51. http://dx.doi.org/10.1093/nar/gkaa1048.
Texto completo da fonteKim, Ki Cheon, In Kyung Lee, Kyoung Ah Kang, Ji Won Cha, Suk Ju Cho, Soo Young Na, Sungwook Chae, Hye Sun Kim, Suhkmann Kim e Jin Won Hyun. "7,8-Dihydroxyflavone Suppresses Oxidative Stress-Induced Base Modification in DNA via Induction of the Repair Enzyme 8-Oxoguanine DNA Glycosylase-1". BioMed Research International 2013 (2013): 1–10. http://dx.doi.org/10.1155/2013/863720.
Texto completo da fonteBehrouzi, Adib, Hanyu Xia, Eric L. Thompson, Mark R. Kelley e Jill C. Fehrenbacher. "Oxidative DNA Damage and Cisplatin Neurotoxicity Is Exacerbated by Inhibition of OGG1 Glycosylase Activity and APE1 Endonuclease Activity in Sensory Neurons". International Journal of Molecular Sciences 23, n.º 3 (8 de fevereiro de 2022): 1909. http://dx.doi.org/10.3390/ijms23031909.
Texto completo da fonteAguilera-Aguirre, Leopoldo, Wenging Hao, Lang Pan, Xiaoxue Li, Alfredo Saavedra-Molina, Attila Bacsi, Zsolt Radak et al. "Pollen-induced oxidative DNA damage response regulates miRNAs controlling allergic inflammation". American Journal of Physiology-Lung Cellular and Molecular Physiology 313, n.º 6 (1 de dezembro de 2017): L1058—L1068. http://dx.doi.org/10.1152/ajplung.00141.2017.
Texto completo da fonteDonley, Nathan, Pawel Jaruga, Erdem Coskun, Miral Dizdaroglu, Amanda K. McCullough e R. Stephen Lloyd. "Small Molecule Inhibitors of 8-Oxoguanine DNA Glycosylase-1 (OGG1)". ACS Chemical Biology 10, n.º 10 (7 de agosto de 2015): 2334–43. http://dx.doi.org/10.1021/acschembio.5b00452.
Texto completo da fonteTahara, Yu-ki, Anna M. Kietrys, Marian Hebenbrock, Yujeong Lee, David L. Wilson e Eric T. Kool. "Dual Inhibitors of 8-Oxoguanine Surveillance by OGG1 and NUDT1". ACS Chemical Biology 14, n.º 12 (17 de outubro de 2019): 2606–15. http://dx.doi.org/10.1021/acschembio.9b00490.
Texto completo da fonteWang, Jiayu, Noemi Nagy e Maria G. Masucci. "The Epstein–Barr virus nuclear antigen-1 upregulates the cellular antioxidant defense to enable B-cell growth transformation and immortalization". Oncogene 39, n.º 3 (11 de setembro de 2019): 603–16. http://dx.doi.org/10.1038/s41388-019-1003-3.
Texto completo da fonteAhmadimanesh, Mahnaz, Mohammad Reza Abbaszadegan, Dorsa Morshedi Rad, Seyed Adel Moallem, Amir Hooshang Mohammadpour, Mohammad Hossein Ghahremani, Farhad Farid Hosseini et al. "Effects of selective serotonin reuptake inhibitors on DNA damage in patients with depression". Journal of Psychopharmacology 33, n.º 11 (26 de setembro de 2019): 1364–76. http://dx.doi.org/10.1177/0269881119874461.
Texto completo da fonteSlupianek, Artur, Rafal Falinski, Pawel Znojek, Tomasz Stoklosa, Sylwia Flis, Valentina Doneddu, Ewelina Synowiec, Janusz Blasiak, Alfonso Bellacosa e Tomasz Skorski. "BCR-ABL1 Kinase Inhibits DNA Glycosylases to Enhance Oxidative DNA Damage and Stimulate Genomic Instability". Blood 120, n.º 21 (16 de novembro de 2012): 520. http://dx.doi.org/10.1182/blood.v120.21.520.520.
Texto completo da fonteGiovannini, Sara, Marie-Christine Weller, Simone Repmann, Holger Moch e Josef Jiricny. "Synthetic lethality between BRCA1 deficiency and poly(ADP-ribose) polymerase inhibition is modulated by processing of endogenous oxidative DNA damage". Nucleic Acids Research 47, n.º 17 (22 de julho de 2019): 9132–43. http://dx.doi.org/10.1093/nar/gkz624.
Texto completo da fonteMahajan, Tushar, Mari Ytre-Arne, Pernille Strøm-Andersen, Bjørn Dalhus e Lise-Lotte Gundersen. "Synthetic Routes to N-9 Alkylated 8-Oxoguanines; Weak Inhibitors of the Human DNA Glycosylase OGG1". Molecules 20, n.º 9 (2 de setembro de 2015): 15944–65. http://dx.doi.org/10.3390/molecules200915944.
Texto completo da fonteLi, Chunshuang, Yaoyao Xue, Xueqing Ba e Ruoxi Wang. "The Role of 8-oxoG Repair Systems in Tumorigenesis and Cancer Therapy". Cells 11, n.º 23 (27 de novembro de 2022): 3798. http://dx.doi.org/10.3390/cells11233798.
Texto completo da fonteTempka, Dominika, Paulina Tokarz, Kinga Chmielewska, Magdalena Kluska, Julita Pietrzak, Żaneta Rygielska, László Virág e Agnieszka Robaszkiewicz. "Downregulation of PARP1 transcription by CDK4/6 inhibitors sensitizes human lung cancer cells to anticancer drug-induced death by impairing OGG1-dependent base excision repair". Redox Biology 15 (maio de 2018): 316–26. http://dx.doi.org/10.1016/j.redox.2017.12.017.
Texto completo da fonteHajnády, Zoltán, Máté Nagy-Pénzes, Máté A. Demény, Katalin Kovács, Tarek El-Hamoly, József Maléth, Péter Hegyi, Zsuzsanna Polgár, Csaba Hegedűs e László Virág. "OGG1 Inhibition Reduces Acinar Cell Injury in a Mouse Model of Acute Pancreatitis". Biomedicines 10, n.º 10 (12 de outubro de 2022): 2543. http://dx.doi.org/10.3390/biomedicines10102543.
Texto completo da fonteHanna, Bishoy M. F., Thomas Helleday e Oliver Mortusewicz. "OGG1 Inhibitor TH5487 Alters OGG1 Chromatin Dynamics and Prevents Incisions". Biomolecules 10, n.º 11 (26 de outubro de 2020): 1483. http://dx.doi.org/10.3390/biom10111483.
Texto completo da fonteMakhdoumi, Pouran, Hooshyar Hossini, Ghulam Md Ashraf e Mojtaba Limoee. "Molecular Mechanism of Aniline Induced Spleen Toxicity and Neuron Toxicity in Experimental Rat Exposure: A Review". Current Neuropharmacology 17, n.º 3 (14 de fevereiro de 2019): 201–13. http://dx.doi.org/10.2174/1570159x16666180803164238.
Texto completo da fonteLin, Po-Han. "Association of DNA repair gene-mutation, mutation burden and, neoantigen load in breast cancer." Journal of Clinical Oncology 36, n.º 5_suppl (10 de fevereiro de 2018): 9. http://dx.doi.org/10.1200/jco.2018.36.5_suppl.9.
Texto completo da fonteVisnes, Torkild, Armando Cázares-Körner, Wenjing Hao, Olov Wallner, Geoffrey Masuyer, Olga Loseva, Oliver Mortusewicz et al. "Small-molecule inhibitor of OGG1 suppresses proinflammatory gene expression and inflammation". Science 362, n.º 6416 (15 de novembro de 2018): 834–39. http://dx.doi.org/10.1126/science.aar8048.
Texto completo da fonteLe, Kang, Zenaide Quezado, Sayuri Kamimura, Meghann L. Smith, Yuki Tahara, Yujeong Lee, Laxminath Tumburu, Anna Conrey, Eric T. Kool e Swee Lay Thein. "8-Oxoguanine DNA Glycosylase 1 Inhibition Suppresses Inflammatory Responses in Sickle Cell Disease". Blood 142, Supplement 1 (28 de novembro de 2023): 2482. http://dx.doi.org/10.1182/blood-2023-182157.
Texto completo da fonteHanna, Bishoy M. F., Maurice Michel, Thomas Helleday e Oliver Mortusewicz. "NEIL1 and NEIL2 Are Recruited as Potential Backup for OGG1 upon OGG1 Depletion or Inhibition by TH5487". International Journal of Molecular Sciences 22, n.º 9 (27 de abril de 2021): 4542. http://dx.doi.org/10.3390/ijms22094542.
Texto completo da fonteHuang, Hai-Li, Ya-Peng Shi, Hui-Juan He, Ya-Hong Wang, Ting Chen, La-Wei Yang, Teng Yang et al. "MiR-4673 Modulates Paclitaxel-Induced Oxidative Stress and Loss of Mitochondrial Membrane Potential by Targeting 8-Oxoguanine-DNA Glycosylase-1". Cellular Physiology and Biochemistry 42, n.º 3 (2017): 889–900. http://dx.doi.org/10.1159/000478644.
Texto completo da fonteLiu, Jin-Peng, Mayumi Komachi, Hideaki Tomura, Chihiro Mogi, Alatangaole Damirin, Masayuki Tobo, Mutsumi Takano et al. "Ovarian cancer G protein-coupled receptor 1-dependent and -independent vascular actions to acidic pH in human aortic smooth muscle cells". American Journal of Physiology-Heart and Circulatory Physiology 299, n.º 3 (setembro de 2010): H731—H742. http://dx.doi.org/10.1152/ajpheart.00977.2009.
Texto completo da fonteLe, Kang, Zenaide Quezado, Haiou Li, Sayuri Kamimura, Meghann L. Smith, Yuki Tahara, Yujeong Lee et al. "8-Oxoguanine DNA Glycosylase 1 Recruits Transcription Factor STAT1 to Promote the Inflammatory Responses in Sickle Cell Disease". Blood 144, Supplement 1 (5 de novembro de 2024): 2490. https://doi.org/10.1182/blood-2024-201619.
Texto completo da fonteXu, Xiaofang, Dianhua Qiao, Lang Pan, Istvan Boldogh, Yingxin Zhao e Allan R. Brasier. "RELA∙8-Oxoguanine DNA Glycosylase1 Is an Epigenetic Regulatory Complex Coordinating the Hexosamine Biosynthetic Pathway in RSV Infection". Cells 11, n.º 14 (15 de julho de 2022): 2210. http://dx.doi.org/10.3390/cells11142210.
Texto completo da fonteChen, Yuwei, e Jun Wang. "1-Deoxynojirimycin Attenuates High-Glucose-Induced Oxidative DNA Damage via Activating NRF2/OGG1 Signaling". Applied Sciences 14, n.º 8 (10 de abril de 2024): 3186. http://dx.doi.org/10.3390/app14083186.
Texto completo da fonteMuhseen, Ziyad Tariq, Mustafa Hussein Ali, Nawar Rushdi Jaber, Dheyaa Shakir Mashrea, Ali Mamoon Alfalki e Guanglin Li. "Determination of Novel Anti-Cancer Agents by Targeting OGG1 Enzyme Using Integrated Bioinformatics Methods". International Journal of Environmental Research and Public Health 18, n.º 24 (16 de dezembro de 2021): 13290. http://dx.doi.org/10.3390/ijerph182413290.
Texto completo da fonteRamirez, Jessica, Elizabeth Paris, Sanjib Basu e Animesh Barua. "Abstract A015: Age-associated molecular changes may predispose the ovary to malignant transformation leading to ovarian cancer (OVCA)". Cancer Research 83, n.º 2_Supplement_1 (15 de janeiro de 2023): A015. http://dx.doi.org/10.1158/1538-7445.agca22-a015.
Texto completo da fonteBhatia, Shama, Yongran Yan, Mina Ly e Peter G. Wells. "Sex- and OGG1-dependent reversal of in utero ethanol-initiated changes in postnatal behaviour by neonatal treatment with the histone deacetylase inhibitor trichostatin A (TSA) in oxoguanine glycosylase 1 (Ogg1) knockout mice". Toxicology Letters 356 (março de 2022): 121–31. http://dx.doi.org/10.1016/j.toxlet.2021.12.010.
Texto completo da fonteKuck, Jamie L., Boniface O. Obiako, Olena M. Gorodnya, Viktor M. Pastukh, Justin Kua, Jon D. Simmons e Mark N. Gillespie. "Mitochondrial DNA damage-associated molecular patterns mediate a feed-forward cycle of bacteria-induced vascular injury in perfused rat lungs". American Journal of Physiology-Lung Cellular and Molecular Physiology 308, n.º 10 (15 de maio de 2015): L1078—L1085. http://dx.doi.org/10.1152/ajplung.00015.2015.
Texto completo da fonteIchimonji, Isao, Hideaki Tomura, Chihiro Mogi, Koichi Sato, Haruka Aoki, Takeshi Hisada, Kunio Dobashi, Tamotsu Ishizuka, Masatomo Mori e Fumikazu Okajima. "Extracellular acidification stimulates IL-6 production and Ca2+ mobilization through proton-sensing OGR1 receptors in human airway smooth muscle cells". American Journal of Physiology-Lung Cellular and Molecular Physiology 299, n.º 4 (outubro de 2010): L567—L577. http://dx.doi.org/10.1152/ajplung.00415.2009.
Texto completo da fonteBaebler, K., C. Maeyashiki, P. Busenhart, M. Schwarzfischer, K. Atrott, S. Lang, M. Spalinger, M. Scharl, G. Rogler e C. de Vallière. "P087 A novel OGR1 (GPR68) inhibitor attenuates inflammation in a murine model of Acute Colitis". Journal of Crohn's and Colitis 12, supplement_1 (16 de janeiro de 2018): S137. http://dx.doi.org/10.1093/ecco-jcc/jjx180.214.
Texto completo da fonteBaebler, Katharina, Cheryl de Valliere, Chiaki Maeyashiki, Philipp Busenhart, Marlene Schwarzfischer, Kirstin Atrott, Silvia Lang, Marianne Spalinger, Michael M. Scharl e Gerhard Rogler. "Tu1775 - A Novel Ogr1 (GPR68) Inhibitor Attenuates Inflammation in a Murine Model of Acute Colitis". Gastroenterology 154, n.º 6 (maio de 2018): S—1016. http://dx.doi.org/10.1016/s0016-5085(18)33401-2.
Texto completo da fonteDing, Shenglong, Ji Xu, Qichen Zhang, Fangyi Chen, Jihong Zhang, Keke Gui, Min Xiong, Bing Li, Zhiyong Ruan e Mingdong Zhao. "OGR1 mediates the inhibitory effects of acidic environment on proliferation and angiogenesis of endothelial progenitor cells". Cell Biology International 43, n.º 11 (16 de julho de 2019): 1307–16. http://dx.doi.org/10.1002/cbin.11179.
Texto completo da fonteWang, Ju-Qiang, Junko Kon, Chihiro Mogi, Masayuki Tobo, Alatangaole Damirin, Koichi Sato, Mayumi Komachi et al. "TDAG8 Is a Proton-sensing and Psychosine-sensitive G-protein-coupled Receptor". Journal of Biological Chemistry 279, n.º 44 (23 de agosto de 2004): 45626–33. http://dx.doi.org/10.1074/jbc.m406966200.
Texto completo da fonteNwokwu, Chukwumaobim Daniel, Adam Y. Xiao, Lynn Harrison e Gergana G. Nestorova. "Identification of microRNA-mRNA regulatory network associated with oxidative DNA damage in human astrocytes". ASN Neuro 14 (janeiro de 2022): 175909142211017. http://dx.doi.org/10.1177/17590914221101704.
Texto completo da fonteLin, Yunfu, e John H. Wilson. "Transcription-Induced CAG Repeat Contraction in Human Cells Is Mediated in Part by Transcription-Coupled Nucleotide Excision Repair". Molecular and Cellular Biology 27, n.º 17 (25 de junho de 2007): 6209–17. http://dx.doi.org/10.1128/mcb.00739-07.
Texto completo da fonteHe, Xiaofei, Mark Wunderlich, Benjamin Mizukawa, James C. Mulloy, Saran Feng, Lauren Lawley, Caleb Hawkins et al. "Proton Sensor GPR68 Is Essential to Maintain Myeloid Malignancies". Blood 132, Supplement 1 (29 de novembro de 2018): 1353. http://dx.doi.org/10.1182/blood-2018-99-110399.
Texto completo da fonteDas, Rickta Rani, Md Atiar Rahman, Salahuddin Qader Al-Araby, Md Shahidul Islam, Md Mamunur Rashid, Nouf Abubakr Babteen, Afnan M. Alnajeebi et al. "The Antioxidative Role of Natural Compounds from a Green Coconut Mesocarp Undeniably Contributes to Control Diabetic Complications as Evidenced by the Associated Genes and Biochemical Indexes". Oxidative Medicine and Cellular Longevity 2021 (27 de julho de 2021): 1–22. http://dx.doi.org/10.1155/2021/9711176.
Texto completo da fonteHoell, Jessica I., Sebastian Ginzel, Cornelia Eckert, Michael Gombert, Ute Fischer, Martin Stanulla, Martin Schrappe et al. "Mutational Landscape of Pediatric Acute Lymphoblastic Leukemia Relapsing after Allogeneic Stem Cell Transplantation". Blood 128, n.º 22 (2 de dezembro de 2016): 601. http://dx.doi.org/10.1182/blood.v128.22.601.601.
Texto completo da fonteKrieger, Nancy S., e David A. Bushinsky. "Pharmacological inhibition of intracellular calcium release blocks acid-induced bone resorption". American Journal of Physiology-Renal Physiology 300, n.º 1 (janeiro de 2011): F91—F97. http://dx.doi.org/10.1152/ajprenal.00276.2010.
Texto completo da fonteBahl, Martin Iain, Søren J. Sørensen, Lars Hestbjerg Hansen e Tine Rask Licht. "Effect of Tetracycline on Transfer and Establishment of the Tetracycline-Inducible Conjugative Transposon Tn916 in the Guts of Gnotobiotic Rats". Applied and Environmental Microbiology 70, n.º 2 (fevereiro de 2004): 758–64. http://dx.doi.org/10.1128/aem.70.2.758-764.2004.
Texto completo da fonteFang, Jing, Xiaona Liu, Lyndsey Bolanos, Brenden Barker, Carmela Rigolino, Agostino Cortelezzi, Esther Natalie Oliva, Kyle J. MacBeth, Kakajan Komurov e Daniel T. Starczynowski. "A Calcium-Dependent Pathway Determines Response to Lenalidomide in Del(5q) Myelodysplastic Syndromes". Blood 124, n.º 21 (6 de dezembro de 2014): 1898. http://dx.doi.org/10.1182/blood.v124.21.1898.1898.
Texto completo da fonteZhu, Liqian, Xiaotian Fu, Chen Yuan, Xinyi Jiang e Gaiping Zhang. "Induction of Oxidative DNA Damage in Bovine Herpesvirus 1 Infected Bovine Kidney Cells (MDBK Cells) and Human Tumor Cells (A549 Cells and U2OS Cells)". Viruses 10, n.º 8 (26 de julho de 2018): 393. http://dx.doi.org/10.3390/v10080393.
Texto completo da fonteTanushi, Xhaferr, Guillaume Pinna, Marie Vandamme, Capucine Siberchicot, Ostiane D’Augustin, Anne-Marie Di Guilmi, J. Pablo Radicella et al. "OGG1 competitive inhibitors show important off-target effects by directly inhibiting efflux pumps and disturbing mitotic progression". Frontiers in Cell and Developmental Biology 11 (3 de fevereiro de 2023). http://dx.doi.org/10.3389/fcell.2023.1124960.
Texto completo da fonteSamaila, Abdullahi, Rusliza Basir, Nur Aimi Liyana Abdul Aziz, Abdusalam Abdullah Alarabei, Mukhtar Lawal Gambo, Maizaton Atmadini Abdullah, Mohd Khairi Hussain, Norshariza Nordin e Roslaini Abd Majid. "Modulation of 8-Oxoguanine DNA Glycosylase 1 (OGG1) Alleviated Anemia Severity and Excessive Cytokines Release during Plasmodium berghei Malaria in Mice". Iranian Journal of Parasitology, 8 de dezembro de 2024. https://doi.org/10.18502/ijpa.v19i4.17163.
Texto completo da fonteBaquero, Juan Miguel, Erik Marchena-Perea, Rocío Mirabet, Raúl Torres-Ruiz, Carmen Blanco-Aparicio, Sandra Rodríguez-Perales, Thomas Helleday, Carlos Benítez-Buelga, Javier Benítez e Ana Osorio. "OGG1 Inhibition Triggers Synthetic Lethality and Enhances The Effect of PARP Inhibitor Olaparib in BRCA1-Deficient TNBC Cells". Frontiers in Oncology 12 (10 de maio de 2022). http://dx.doi.org/10.3389/fonc.2022.888810.
Texto completo da fonteBaquero, Juan Miguel, Carlos Benítez-Buelga, Varshni Rajagopal, Zhao Zhenjun, Raúl Torres-Ruiz, Sarah Müller, Bishoy M. F. Hanna et al. "Small molecule inhibitor of OGG1 blocks oxidative DNA damage repair at telomeres and potentiates methotrexate anticancer effects". Scientific Reports 11, n.º 1 (10 de fevereiro de 2021). http://dx.doi.org/10.1038/s41598-021-82917-7.
Texto completo da fonteZhong, Yunxiao, Xinya Zhang, Ruibing Feng, Yu Fan, Zhang Zhang, Qing‐Wen Zhang, Jian‐Bo Wan, Yitao Wang, Hua Yu e Guodong Li. "OGG1: An emerging multifunctional therapeutic target for the treatment of diseases caused by oxidative DNA damage". Medicinal Research Reviews, 9 de agosto de 2024. http://dx.doi.org/10.1002/med.22068.
Texto completo da fonte"Dual Inhibitors of OGG1/NUDT1 for Probing Disease States". Synfacts 16, n.º 02 (21 de janeiro de 2020): 0223. http://dx.doi.org/10.1055/s-0039-1691638.
Texto completo da fonteSavino, Luca, Maria Carmela Di Marcantonio, Carmelo Moscatello, Roberto Cotellese, Lucia Centurione, Raffaella Muraro, Gitana Maria Aceto e Gabriella Mincione. "Effects of H2O2 Treatment Combined With PI3K Inhibitor and MEK Inhibitor in AGS Cells: Oxidative Stress Outcomes in a Model of Gastric Cancer". Frontiers in Oncology 12 (16 de março de 2022). http://dx.doi.org/10.3389/fonc.2022.860760.
Texto completo da fonte