Artigos de revistas sobre o tema "Offshore wind turbine blades (OWTB)"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Offshore wind turbine blades (OWTB)".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Aoujdad, Khalid, BA Elhadji-Amadou, Pierre Marechal, Damien Leduc, Alexandre Vivet, Florian Gehring e Mounsif ECH-CHERIF El-Kettani. "Integrated analysis of materials for offshore wind turbine blades: mechanical and acoustical coupling". Journal of Physics: Conference Series 2904, n.º 1 (1 de novembro de 2024): 012004. http://dx.doi.org/10.1088/1742-6596/2904/1/012004.
Texto completo da fonteBhattacharya, Subhamoy, Suryakanta Biswal, Muhammed Aleem, Sadra Amani, Athul Prabhakaran, Ganga Prakhya, Domenico Lombardi e Harsh K. Mistry. "Seismic Design of Offshore Wind Turbines: Good, Bad and Unknowns". Energies 14, n.º 12 (12 de junho de 2021): 3496. http://dx.doi.org/10.3390/en14123496.
Texto completo da fonteVuong, Nguyen Van, e Mai Hong Quan. "Fatigue analysis of jacket support structure for offshore wind turbines". Journal of Science and Technology in Civil Engineering (STCE) - NUCE 13, n.º 1 (31 de janeiro de 2019): 46–59. http://dx.doi.org/10.31814/stce.nuce2019-13(1)-05.
Texto completo da fonteWen, K. Z., D. Dehtyriov e B. W. Byrne. "Assessing aerodynamic influences on offshore foundation design for large wind farms". Journal of Physics: Conference Series 2745, n.º 1 (1 de abril de 2024): 012023. http://dx.doi.org/10.1088/1742-6596/2745/1/012023.
Texto completo da fonteRoni Sahroni, Taufik. "Modeling and Simulation of Offshore Wind Power Platform for 5 MW Baseline NREL Turbine". Scientific World Journal 2015 (2015): 1–11. http://dx.doi.org/10.1155/2015/819384.
Texto completo da fonteAlgolfat, Amna, Weizhuo Wang e Alhussein Albarbar. "The Sensitivity of 5MW Wind Turbine Blade Sections to the Existence of Damage". Energies 16, n.º 3 (28 de janeiro de 2023): 1367. http://dx.doi.org/10.3390/en16031367.
Texto completo da fonteZhang, Peng, Zhengjie He, Chunyi Cui, Liang Ren e Ruqing Yao. "Operational Modal Analysis of Offshore Wind Turbine Tower under Ambient Excitation". Journal of Marine Science and Engineering 10, n.º 12 (9 de dezembro de 2022): 1963. http://dx.doi.org/10.3390/jmse10121963.
Texto completo da fonteLian, Jijian, Ou Cai, Xiaofeng Dong, Qi Jiang e Yue Zhao. "Health Monitoring and Safety Evaluation of the Offshore Wind Turbine Structure: A Review and Discussion of Future Development". Sustainability 11, n.º 2 (18 de janeiro de 2019): 494. http://dx.doi.org/10.3390/su11020494.
Texto completo da fonteColherinhas, G. B., F. Petrini e M. V. G. de Morais. "Risk mitigation/performances incrementation of an offshore wind turbine with a flexible monopile foundation by means of a pendulum-tuned mass damper". Journal of Physics: Conference Series 2647, n.º 3 (1 de junho de 2024): 032011. http://dx.doi.org/10.1088/1742-6596/2647/3/032011.
Texto completo da fonteTong, Yihui, Weitao Liu, Xuanyi Liu, Peng Wang, Zhe Sheng, Shengquan Li, Hao Zhang et al. "Materials Design and Structural Health Monitoring of Horizontal Axis Offshore Wind Turbines: A State-of-the-Art Review". Materials 18, n.º 2 (13 de janeiro de 2025): 329. https://doi.org/10.3390/ma18020329.
Texto completo da fontePartovi-Mehr, Nasim, John DeFrancisci, Mohsen Minaeijavid, Babak Moaveni, Daniel Kuchma, Christopher D. P. Baxter, Eric M. Hines e Aaron S. Bradshaw. "Fatigue Analysis of a Jacket-Supported Offshore Wind Turbine at Block Island Wind Farm". Sensors 24, n.º 10 (9 de maio de 2024): 3009. http://dx.doi.org/10.3390/s24103009.
Texto completo da fonteLei, Zhenbo, Gang Liu, Xuesen Zhang, Qingshan Yang e S. S. Law. "Three-Dimensional Prestressed Tuned Mass Damper for Passive Vibration Control of Coupled Multiple DOFs Offshore Wind Turbine". Structural Control and Health Monitoring 2023 (14 de setembro de 2023): 1–27. http://dx.doi.org/10.1155/2023/8897653.
Texto completo da fonteEdirisinghe, Dylan S., Lilibeth A. Zambrano M., Edmond Tobin e Ashish Vashishtha. "CFD analysis of droplet impact pressure for prediction of rain erosion of wind turbine blades". Journal of Physics: Conference Series 2875, n.º 1 (1 de novembro de 2024): 012019. http://dx.doi.org/10.1088/1742-6596/2875/1/012019.
Texto completo da fonteYe, Kehua, Chun Li, Fudong Chen, Zifei Xu, Wanfu Zhang e Junwei Zhang. "Floating Ice Load Reduction of Offshore Wind Turbines by Two Approaches". International Journal of Structural Stability and Dynamics 18, n.º 10 (outubro de 2018): 1850129. http://dx.doi.org/10.1142/s0219455418501298.
Texto completo da fontePartovi-Mehr, Nasim, Emmanuel Branlard, Mingming Song, Babak Moaveni, Eric M. Hines e Amy Robertson. "Sensitivity Analysis of Modal Parameters of a Jacket Offshore Wind Turbine to Operational Conditions". Journal of Marine Science and Engineering 11, n.º 8 (30 de julho de 2023): 1524. http://dx.doi.org/10.3390/jmse11081524.
Texto completo da fonteFu, Xiaohan, e Meiping Sheng. "Research on Structural Failure Analysis and Strengthening Design of Offshore Wind Turbine Blades". Journal of Marine Science and Engineering 10, n.º 11 (4 de novembro de 2022): 1661. http://dx.doi.org/10.3390/jmse10111661.
Texto completo da fonteDong, Xiao Hui, Tie Jun Yuan e Ru Hong Ma. "Corrosion Mechanism on Offshore Wind Turbine Blade in Salt Fog Environment". Applied Mechanics and Materials 432 (setembro de 2013): 258–62. http://dx.doi.org/10.4028/www.scientific.net/amm.432.258.
Texto completo da fonteLai, Yongqing, Wei Li, Ben He, Gen Xiong, Renqiang Xi e Piguang Wang. "Influence of Blade Flexibility on the Dynamic Behaviors of Monopile-Supported Offshore Wind Turbines". Journal of Marine Science and Engineering 11, n.º 11 (24 de outubro de 2023): 2041. http://dx.doi.org/10.3390/jmse11112041.
Texto completo da fonteHua, Xugang, Qingshen Meng, Bei Chen e Zili Zhang. "Structural damping sensitivity affecting the flutter performance of a 10-MW offshore wind turbine". Advances in Structural Engineering 23, n.º 14 (15 de junho de 2020): 3037–47. http://dx.doi.org/10.1177/1369433220927260.
Texto completo da fonteJu, Shen-Haw, Yu-Cheng Huang e Hsin-Hsiang Hsu. "Parallel Analysis of Offshore Wind Turbine Structures under Ultimate Loads". Applied Sciences 9, n.º 21 (4 de novembro de 2019): 4708. http://dx.doi.org/10.3390/app9214708.
Texto completo da fonteAsim, Taimoor, Sheikh Zahidul Islam, Arman Hemmati e Muhammad Saif Ullah Khalid. "A Review of Recent Advancements in Offshore Wind Turbine Technology". Energies 15, n.º 2 (14 de janeiro de 2022): 579. http://dx.doi.org/10.3390/en15020579.
Texto completo da fonteReinhardt, T., C. Sastre Jurado, W. Weijtjens e C. Devriendt. "On the influence of rotor nacelle assembly modelling on the computed eigenfrequencies of offshore wind turbines". Journal of Physics: Conference Series 2767, n.º 5 (1 de junho de 2024): 052034. http://dx.doi.org/10.1088/1742-6596/2767/5/052034.
Texto completo da fonteTeng, Hanwei, Shujian Li, Zheng Cao, Shuang Li, Changping Li e Tae Jo Ko. "Carbon Fiber Composites for Large-Scale Wind Turbine Blades: Applicability Study and Comprehensive Evaluation in China". Journal of Marine Science and Engineering 11, n.º 3 (16 de março de 2023): 624. http://dx.doi.org/10.3390/jmse11030624.
Texto completo da fonteZha, Ruosi, e Kai Wang. "Numerical simulation of flow-induced noise generation and propagation of a floating offshore wind turbine with prescribed pitch motion". Journal of the Acoustical Society of America 154, n.º 4_supplement (1 de outubro de 2023): A283. http://dx.doi.org/10.1121/10.0023533.
Texto completo da fonteZhou, Xingguo, Yankang Tian e Yi Qin. "IoT platform for offshore wind turbine blade structure health monitoring". MATEC Web of Conferences 401 (2024): 08012. http://dx.doi.org/10.1051/matecconf/202440108012.
Texto completo da fonteMa, Yong, Aiming Zhang, Lele Yang, Chao Hu e Yue Bai. "Investigation on Optimization Design of Offshore Wind Turbine Blades based on Particle Swarm Optimization". Energies 12, n.º 10 (23 de maio de 2019): 1972. http://dx.doi.org/10.3390/en12101972.
Texto completo da fonteSong, Jian, Junying Chen, Yufei Wu e Lixiao Li. "Topology Optimization-Driven Design for Offshore Composite Wind Turbine Blades". Journal of Marine Science and Engineering 10, n.º 10 (13 de outubro de 2022): 1487. http://dx.doi.org/10.3390/jmse10101487.
Texto completo da fonteMéndez, B., X. Munduate e U. San Miguel. "Airfoil family design for large offshore wind turbine blades". Journal of Physics: Conference Series 524 (16 de junho de 2014): 012022. http://dx.doi.org/10.1088/1742-6596/524/1/012022.
Texto completo da fonteTalbot, Jeremy, Qing Wang, Neil Brady e Roger Holden. "Offshore wind turbine blades measurement using Coherent Laser Radar". Measurement 79 (fevereiro de 2016): 53–65. http://dx.doi.org/10.1016/j.measurement.2015.10.030.
Texto completo da fonteRichards, Phillip W., D. Todd Griffth e Dewey H. Hodges. "Smart Loads Management for Damaged Offshore Wind Turbine Blades". Wind Engineering 39, n.º 4 (agosto de 2015): 419–36. http://dx.doi.org/10.1260/0309-524x.39.4.419.
Texto completo da fonteLi, Jing, Jianyun Chen e Xiaobo Chen. "Dynamic characteristics analysis of the offshore wind turbine blades". Journal of Marine Science and Application 10, n.º 1 (março de 2011): 82–87. http://dx.doi.org/10.1007/s11804-011-1045-6.
Texto completo da fonteValaker, E. A., S. Armada e S. Wilson. "Droplet Erosion Protection Coatings for Offshore Wind Turbine Blades". Energy Procedia 80 (2015): 263–75. http://dx.doi.org/10.1016/j.egypro.2015.11.430.
Texto completo da fonteDashtkar, Arash, Homayoun Hadavinia, M. Necip Sahinkaya, Neil A. Williams, Samireh Vahid, Fanya Ismail e Matthew Turner. "Rain erosion-resistant coatings for wind turbine blades: A review". Polymers and Polymer Composites 27, n.º 8 (15 de maio de 2019): 443–75. http://dx.doi.org/10.1177/0967391119848232.
Texto completo da fonteAnderson, Benjamin, Pietro Bortolotti e Nick Johnson. "Development of an open-source segmented blade design tool". Journal of Physics: Conference Series 2265, n.º 3 (1 de maio de 2022): 032023. http://dx.doi.org/10.1088/1742-6596/2265/3/032023.
Texto completo da fonteSrilakshmi, Koganti, P. Aravindhababu e P. Ravi Babu. "A New Frequency for Offshore Wind-farm Based on Component Loss Calculation". International Journal of Applied Power Engineering (IJAPE) 7, n.º 3 (1 de dezembro de 2018): 227. http://dx.doi.org/10.11591/ijape.v7.i3.pp227-234.
Texto completo da fonteBinsbergen, Diederik van, Amrit Verma, Amir Nejad e Jan Helsen. "Modeling of rain-induced erosion of wind turbine blades within an offshore wind cluster". Journal of Physics: Conference Series 2875, n.º 1 (1 de novembro de 2024): 012040. http://dx.doi.org/10.1088/1742-6596/2875/1/012040.
Texto completo da fonteCui, Jiaping, Zhigang Cao, Pin Lyu, Huaiwu Peng, Quankun Li, Ruixian Ma e Yingming Liu. "Research on the Blades and Performance of Semi-Submersible Wind Turbines with Different Capacities". Energies 17, n.º 13 (2 de julho de 2024): 3259. http://dx.doi.org/10.3390/en17133259.
Texto completo da fonteRecalde-Camacho, L., W. Leithead, L. Morgan e A. Kazemi Amiri. "Controller design for the X-Rotor offshore wind turbine concept". Journal of Physics: Conference Series 2767, n.º 3 (1 de junho de 2024): 032050. http://dx.doi.org/10.1088/1742-6596/2767/3/032050.
Texto completo da fonteMcGugan, M., G. Pereira, B. F. Sørensen, H. Toftegaard e K. Branner. "Damage tolerance and structural monitoring for wind turbine blades". Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 373, n.º 2035 (28 de fevereiro de 2015): 20140077. http://dx.doi.org/10.1098/rsta.2014.0077.
Texto completo da fonteKhoury, Boutros, Vicenç Puig e Fatiha Nejjari. "Model-based Prognosis Approach using a Zonotopic Kalman Filter with Application to a Wind Turbine". PHM Society European Conference 5, n.º 1 (22 de julho de 2020): 9. http://dx.doi.org/10.36001/phme.2020.v5i1.1258.
Texto completo da fonteNing, Fang-Shii, Kuang-Chang Pien, Wei-Jie Liou e Tsung-Chi Cheng. "Site Selection for Offshore Wind Power Farms with Natural Disaster Risk Assessment: A Case Study of the Waters off Taiwan’s West Coast". Energies 17, n.º 11 (3 de junho de 2024): 2711. http://dx.doi.org/10.3390/en17112711.
Texto completo da fonteCai, Xin, Yazhou Wang, Bofeng Xu e Junheng Feng. "Performance and Effect of Load Mitigation of a Trailing-Edge Flap in a Large-Scale Offshore Wind Turbine". Journal of Marine Science and Engineering 8, n.º 2 (23 de janeiro de 2020): 72. http://dx.doi.org/10.3390/jmse8020072.
Texto completo da fonteBošnjaković, Mladen, Marko Katinić, Robert Santa e Dejan Marić. "Wind Turbine Technology Trends". Applied Sciences 12, n.º 17 (29 de agosto de 2022): 8653. http://dx.doi.org/10.3390/app12178653.
Texto completo da fonteDong, X. H., T. J. Yuan e R. H. Ma. "Mechanical Analysis of Fatigue Damages on Offshore Wind Turbine Blades". Journal of Applied Sciences 13, n.º 10 (1 de maio de 2013): 1895–900. http://dx.doi.org/10.3923/jas.2013.1895.1900.
Texto completo da fonteBoudounit, Hicham, Mostapha Tarfaoui e Dennoun Saifaoui. "Modal analysis for optimal design of offshore wind turbine blades". Materials Today: Proceedings 30 (2020): 998–1004. http://dx.doi.org/10.1016/j.matpr.2020.04.373.
Texto completo da fonteCaboni, Marco, Henk M. Slot, Gerben Bergman, Dennis A. J. Wouters e Harald J. Van Der Mijle Meijer. "Evaluation of wind turbine blades’ rain-induced leading edge erosion using rainfall measurements at offshore, coastal and onshore locations in the Netherlands". Journal of Physics: Conference Series 2767, n.º 6 (1 de junho de 2024): 062003. http://dx.doi.org/10.1088/1742-6596/2767/6/062003.
Texto completo da fonteWu, Zonghao, Kai Wang, Tianyu Jie e Xiaodi Wu. "Coupled Dynamic Characteristics of a Spar-Type Offshore Floating Two-Bladed Wind Turbine with a Flexible Hub Connection". Journal of Marine Science and Engineering 12, n.º 4 (25 de março de 2024): 547. http://dx.doi.org/10.3390/jmse12040547.
Texto completo da fonteKorczewski, Zbigniew, e Jacek Rudnicki. "Active Diagnostic Experimentation on Wind Turbine Blades with Vibration Measurements and Analysis". Polish Maritime Research 31, n.º 3 (21 de agosto de 2024): 126–34. http://dx.doi.org/10.2478/pomr-2024-0042.
Texto completo da fonteMorăraș, Ciprian Ionuț, Viorel Goanță, Dorin Husaru, Bogdan Istrate, Paul Doru Bârsănescu e Corneliu Munteanu. "Analysis of the Effect of Fiber Orientation on Mechanical and Elastic Characteristics at Axial Stresses of GFRP Used in Wind Turbine Blades". Polymers 15, n.º 4 (9 de fevereiro de 2023): 861. http://dx.doi.org/10.3390/polym15040861.
Texto completo da fonteBoudounit, Hicham, Mostapha Tarfaoui, Dennoun Saifaoui e Mourad Nachtane. "Structural analysis of offshore wind turbine blades using finite element method". Wind Engineering 44, n.º 2 (23 de maio de 2019): 168–80. http://dx.doi.org/10.1177/0309524x19849830.
Texto completo da fonte