Artigos de revistas sobre o tema "Offshore structures, CFD"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 47 melhores artigos de revistas para estudos sobre o assunto "Offshore structures, CFD".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Vasilyev, Leonid, Konstantinos Christakos e Brian Hannafious. "Treating Wind Measurements Influenced by Offshore Structures with CFD Methods". Energy Procedia 80 (2015): 223–28. http://dx.doi.org/10.1016/j.egypro.2015.11.425.
Texto completo da fontePeric, Milovan, e Volker Bertram. "Trends in Industry Applications of Computational Fluid Dynamics for Maritime Flows". Journal of Ship Production and Design 27, n.º 04 (1 de novembro de 2011): 194–201. http://dx.doi.org/10.5957/jspd.2011.27.4.194.
Texto completo da fonteA. Rahman, Mohd Asamudin, Muhammad Nadzrin Nazri, Ahmad Fitriadhy, Mohammad Fadhli Ahmad, Erwan Hafizi Kasiman, Mohd Azlan Musa, Fatin Alias e Mohd Hairil Mohd. "A Fundamental CFD Investigation of Offshore Structures for Artificial Coral Reef Development". CFD Letters 12, n.º 7 (30 de julho de 2020): 110–25. http://dx.doi.org/10.37934/cfdl.12.7.110125.
Texto completo da fonteVan den Abeele, F., e J. Vande Voorde. "Stability of offshore structures in shallow water depth". International Journal Sustainable Construction & Design 2, n.º 2 (6 de novembro de 2011): 320–33. http://dx.doi.org/10.21825/scad.v2i2.20529.
Texto completo da fonteDecorte, Griet, Alessandro Toffoli, Geert Lombaert e Jaak Monbaliu. "On the Use of a Domain Decomposition Strategy in Obtaining Response Statistics in Non-Gaussian Seas". Fluids 6, n.º 1 (7 de janeiro de 2021): 28. http://dx.doi.org/10.3390/fluids6010028.
Texto completo da fonteDecorte, Griet, Alessandro Toffoli, Geert Lombaert e Jaak Monbaliu. "On the Use of a Domain Decomposition Strategy in Obtaining Response Statistics in Non-Gaussian Seas". Fluids 6, n.º 1 (7 de janeiro de 2021): 28. http://dx.doi.org/10.3390/fluids6010028.
Texto completo da fonteWu, Yanling. "Numerical tools to predict the environmental loads for offshore structures under extreme weather conditions". Modern Physics Letters B 32, n.º 12n13 (10 de maio de 2018): 1840039. http://dx.doi.org/10.1142/s0217984918400390.
Texto completo da fonteDymarski, Paweł, Ewelina Ciba e Tomasz Marcinkowski. "Effective Method for Determining Environmental Loads on Supporting Structures for Offshore Wind Turbines". Polish Maritime Research 23, n.º 1 (1 de janeiro de 2016): 52–60. http://dx.doi.org/10.1515/pomr-2016-0008.
Texto completo da fonteDervilis, Nikolaos, A. C. W. Creech, A. E. Maguire, Ifigeneia Antoniadou, R. J. Barthorpe e Keith Worden. "An SHM View of a CFD Model of Lillgrund Wind Farm". Applied Mechanics and Materials 564 (junho de 2014): 164–69. http://dx.doi.org/10.4028/www.scientific.net/amm.564.164.
Texto completo da fonteRahman, Shaikh Atikur, Zubair Imam Syed, John V. Kurian e M. S. Liew. "Structural Response of Offshore Blast Walls under Accidental Explosion". Advanced Materials Research 1043 (outubro de 2014): 278–82. http://dx.doi.org/10.4028/www.scientific.net/amr.1043.278.
Texto completo da fonteJujuly, M. M., Mohammad Azizur Rahman, Aaron Maynard e Matthew Adey. "Hydrate-Induced Vibration in an Offshore Pipeline". SPE Journal 25, n.º 02 (31 de dezembro de 2019): 732–43. http://dx.doi.org/10.2118/187378-pa.
Texto completo da fonteLara, Javier L., Inigo J. Losada, Gabriel Barajas, Maria Maza e Benedetto Di Paolo. "RECENT ADVANCES IN 3D MODELLING OF WAVE-STRUCTURE INTERACTION WITH CFD MODELS". Coastal Engineering Proceedings, n.º 36 (30 de dezembro de 2018): 91. http://dx.doi.org/10.9753/icce.v36.waves.91.
Texto completo da fonteZhou, Xiao, Liu, Incecik, Peyrard, Li e Pan. "Numerical Modelling of Dynamic Responses of a Floating Offshore Wind Turbine Subject to Focused Waves". Energies 12, n.º 18 (9 de setembro de 2019): 3482. http://dx.doi.org/10.3390/en12183482.
Texto completo da fonteStahlmann, Arne, e Torsten Schlurmann. "INVESTIGATIONS ON SCOUR DEVELOPMENT AT TRIPOD FOUNDATIONS FOR OFFSHORE WIND TURBINES: MODELING AND APPLICATION". Coastal Engineering Proceedings 1, n.º 33 (25 de outubro de 2012): 90. http://dx.doi.org/10.9753/icce.v33.sediment.90.
Texto completo da fonteWang, Weizhi, Arun Kamath e Hans Bihs. "IRREGULAR WAVE MODELLING WITH CFD IN SULAFJORD FOR THE E39 PROJECT". Coastal Engineering Proceedings, n.º 36 (30 de dezembro de 2018): 45. http://dx.doi.org/10.9753/icce.v36.waves.45.
Texto completo da fonteTeigen, P., V. P. Przulj e B. A. Younis. "A CFD Investigation Into the Effects of Current Incidence on the Hydrodynamic Loading on a Deepwater TLP". Journal of Offshore Mechanics and Arctic Engineering 121, n.º 2 (1 de maio de 1999): 109–15. http://dx.doi.org/10.1115/1.2830074.
Texto completo da fonteCui, W.-C. "A feasible study of fatigue life prediction for marine structures based on crack propagation analysis". Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment 217, n.º 1 (1 de março de 2003): 11–23. http://dx.doi.org/10.1243/147509003321623112.
Texto completo da fonteCornett, Andrew. "EXTREME WAVE PRESSURES AND LOADS ON A PILE-SUPPORTED WHARF DECK - INFLUENCES OF AIR GAP AND WAVE DIRECTION". Coastal Engineering Proceedings, n.º 36 (30 de dezembro de 2018): 5. http://dx.doi.org/10.9753/icce.v36.waves.5.
Texto completo da fonteVIDYA, C., J. SHEEJA e M. SEKAR. "TOWARDS REDUCING COMPUTATIONAL EFFORT IN VORTEX INDUCED VIBRATION PREDICTIONS OF A CYLINDRICAL RISER." Periódico Tchê Química 16, n.º 33 (20 de março de 2019): 841–53. http://dx.doi.org/10.52571/ptq.v16.n33.2019.856_periodico33_pgs_841_853.pdf.
Texto completo da fonteShang, Zhaohui, Huibin Yan, Weidong Ruan e Yong Bai. "A Study on a Quantitative Analysis Method for Fire and Explosion Risk Assessment of Offshore Platforms". Advances in Civil Engineering 2020 (9 de outubro de 2020): 1–20. http://dx.doi.org/10.1155/2020/3098719.
Texto completo da fonteDharmavasan, S., e W. D. Dover. "Nondestructive Evaluation of Offshore Structures Using Fracture Mechanics". Applied Mechanics Reviews 41, n.º 2 (1 de fevereiro de 1988): 36–49. http://dx.doi.org/10.1115/1.3151880.
Texto completo da fonteSeo, Junwon, William Schaffer, Monique Head, Mehdi Shokouhian e Eunsoo Choi. "Integrated FEM and CFD Simulation for Offshore Wind Turbine Structural Response". International Journal of Steel Structures 19, n.º 4 (29 de janeiro de 2019): 1112–24. http://dx.doi.org/10.1007/s13296-018-0191-y.
Texto completo da fonteAhmed, Mushtaq, Zafarullah Nizamani, Akihiko Nakayama e Montasir Osman. "Some Recent Fluid-Structure Interaction Approaches for the Wave Current Behaviour With Offshore Structures". CFD Letters 12, n.º 9 (30 de setembro de 2020): 15–26. http://dx.doi.org/10.37934/cfdl.12.9.1526.
Texto completo da fonteElhanafi, Ahmed, Gregor Macfarlane e Dezhi Ning. "Hydrodynamic performance of single–chamber and dual–chamber offshore–stationary Oscillating Water Column devices using CFD". Applied Energy 228 (outubro de 2018): 82–96. http://dx.doi.org/10.1016/j.apenergy.2018.06.069.
Texto completo da fonteLi, Ru-Yu, Jin-Jian Chen e Chen-Cong Liao. "Numerical Study on Interaction between Submarine Landslides and a Monopile Using CFD Techniques". Journal of Marine Science and Engineering 9, n.º 7 (2 de julho de 2021): 736. http://dx.doi.org/10.3390/jmse9070736.
Texto completo da fonteGoldan, Michael, e Robert J. G. A. Kroon. "As-Built Product Modeling and Reverse Engineering in Shipbuilding Through Combined Digital Photogrammetry and CAD/CAM Technology". Journal of Ship Production 19, n.º 02 (1 de maio de 2003): 98–104. http://dx.doi.org/10.5957/jsp.2003.19.2.98.
Texto completo da fonteLiu, Yichao, Daoyi Chen e Sunwei Li. "The artificial generation of the equilibrium marine atmospheric boundary layer for the CFD simulation of offshore wind turbines". Journal of Wind Engineering and Industrial Aerodynamics 183 (dezembro de 2018): 44–54. http://dx.doi.org/10.1016/j.jweia.2018.10.008.
Texto completo da fonteHan, Young-Soo, Jaejoon Lee, Jungmin Lee, Wonhyuk Lee e Kyungho Lee. "3D CAD data extraction and conversion for application of augmented/virtual reality to the construction of ships and offshore structures". International Journal of Computer Integrated Manufacturing 32, n.º 7 (11 de abril de 2019): 658–68. http://dx.doi.org/10.1080/0951192x.2019.1599440.
Texto completo da fonteBuschinelli, P., J. D. Salazar, D. Regner, D. Oliveira, M. Machado, G. Marcellino, D. C. Sales et al. "TARGETLESS PHOTOGRAMMETRY NETWORK SIMULATION FOR INSPECTION PLANNING IN OIL AND GAS INDUSTRY". ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences V-1-2020 (3 de agosto de 2020): 285–91. http://dx.doi.org/10.5194/isprs-annals-v-1-2020-285-2020.
Texto completo da fonteSacchi, Marco, Giuseppe De Natale, Volkhard Spiess, Lena Steinmann, Valerio Acocella, Marta Corradino, Shanaka de Silva et al. "A roadmap for amphibious drilling at the Campi Flegrei caldera: insights from a MagellanPlus workshop". Scientific Drilling 26 (2 de dezembro de 2019): 29–46. http://dx.doi.org/10.5194/sd-26-29-2019.
Texto completo da fonteMartin, Tobias, e Hans Bihs. "A CFD Approach for Modelling the Fluid-Structure Interaction of Offshore Aquaculture Cages and Waves". Journal of Offshore Mechanics and Arctic Engineering, 14 de setembro de 2021, 1–10. http://dx.doi.org/10.1115/1.4052421.
Texto completo da fonteAggarwal, Ankit, Pietro D. Tomaselli, Erik Damgaard Christensen e Hans Bihs. "Computational Fluid Dynamics Investigations of Breaking Focused Wave-Induced Loads on a Monopile and the Effect of Breaker Location". Journal of Offshore Mechanics and Arctic Engineering 142, n.º 2 (16 de novembro de 2019). http://dx.doi.org/10.1115/1.4045187.
Texto completo da fonteChen Ong, Muk, Eirik Trygsland e Dag Myrhaug. "Numerical Study of Seabed Boundary Layer Flow Around Monopile and Gravity-Based Wind Turbine Foundations". Journal of Offshore Mechanics and Arctic Engineering 139, n.º 4 (5 de maio de 2017). http://dx.doi.org/10.1115/1.4036208.
Texto completo da fonteNematbakhsh, Ali, Zhen Gao e Torgeir Moan. "Benchmarking of a Computational Fluid Dynamics-Based Numerical Wave Tank for Studying Wave Load Effects on Fixed and Floating Offshore Structures". Journal of Offshore Mechanics and Arctic Engineering 139, n.º 3 (5 de abril de 2017). http://dx.doi.org/10.1115/1.4035475.
Texto completo da fonte"Numerical Examination on the Effect of Internal Fluid Presssure on the Hydrodynamic Response of a Marine Riser". International Journal of Innovative Technology and Exploring Engineering 8, n.º 11S (11 de outubro de 2019): 1310–15. http://dx.doi.org/10.35940/ijitee.k1265.09811s19.
Texto completo da fonteGonçalves, Rodolfo Trentin, Shinichiro Hirabayashi, Guilherme Vaz e Hideyuki Suzuki. "Force Measurements of the Flow Around Arrays of Three and Four Columns With Different Geometry Sections, Spacing Ratios, and Incidence Angles". Journal of Offshore Mechanics and Arctic Engineering 142, n.º 2 (16 de novembro de 2019). http://dx.doi.org/10.1115/1.4045212.
Texto completo da fonteBihs, Hans, Arun Kamath, Ankit Aggarwal e Csaba Pakozdi. "Efficient Wave Modeling Using Nonhydrostatic Pressure Distribution and Free Surface Tracking on Fixed Grids". Journal of Offshore Mechanics and Arctic Engineering 141, n.º 4 (8 de abril de 2019). http://dx.doi.org/10.1115/1.4043179.
Texto completo da fonteEbrahimnejad, L., K. D. Janoyan, H. Yadollahi Farsani, D. T. Valentine e P. Marzocca. "Efficient Predictions of Unsteady Viscous Flows Around Bluff Bodies by Aerodynamic Reduced Order Models". Journal of Offshore Mechanics and Arctic Engineering 136, n.º 1 (25 de outubro de 2013). http://dx.doi.org/10.1115/1.4025544.
Texto completo da fonteBihs, Hans, Weizhi Wang, Csaba Pakozdi e Arun Kamath. "REEF3D::FNPF—A Flexible Fully Nonlinear Potential Flow Solver". Journal of Offshore Mechanics and Arctic Engineering 142, n.º 4 (20 de fevereiro de 2020). http://dx.doi.org/10.1115/1.4045915.
Texto completo da fonteBihs, Hans, Mayilvahanan Alagan Chella, Arun Kamath e Øivind Asgeir Arntsen. "Numerical Investigation of Focused Waves and Their Interaction With a Vertical Cylinder Using REEF3D". Journal of Offshore Mechanics and Arctic Engineering 139, n.º 4 (10 de maio de 2017). http://dx.doi.org/10.1115/1.4036206.
Texto completo da fonteChella, Mayilvahanan Alagan, Hans Bihs, Dag Myrhaug e Øivind Asgeir Arntsen. "Numerical Modeling of Breaking Wave Kinematics and Wave Impact Pressures on a Vertical Slender Cylinder". Journal of Offshore Mechanics and Arctic Engineering 141, n.º 5 (15 de fevereiro de 2019). http://dx.doi.org/10.1115/1.4042265.
Texto completo da fonteSasikumar, Athul, Arun Kamath, Onno Musch, Hans Bihs e Øivind A. Arntsen. "Numerical Modeling of Berm Breakwater Optimization With Varying Berm Geometry Using REEF3D". Journal of Offshore Mechanics and Arctic Engineering 141, n.º 1 (13 de agosto de 2018). http://dx.doi.org/10.1115/1.4040508.
Texto completo da fonteKoto, Jaswar, e Abdul Khair Junaidi. "Analysis of Vortex-Induced Vibration of Riser using Spalart-Almaras Model". Jurnal Teknologi 69, n.º 7 (15 de julho de 2014). http://dx.doi.org/10.11113/jt.v69.3260.
Texto completo da fonteKamath, Arun, Hans Bihs e Øivind A. Arntsen. "Study of Water Impact and Entry of a Free Falling Wedge Using Computational Fluid Dynamics Simulations". Journal of Offshore Mechanics and Arctic Engineering 139, n.º 3 (28 de março de 2017). http://dx.doi.org/10.1115/1.4035384.
Texto completo da fonteFan, Ning, Wangcheng Zhang, Fauzan Sahdi e Tingkai Nian. "Evaluation of horizontal submarine slide impact force on pipeline via a modified hybrid geotechnical-fluid dynamics framework". Canadian Geotechnical Journal, 27 de agosto de 2021. http://dx.doi.org/10.1139/cgj-2021-0089.
Texto completo da fonte"Simulación numérica del sloshing". Revista ECIPeru, 10 de janeiro de 2019, 68–75. http://dx.doi.org/10.33017/reveciperu2011.0012/.
Texto completo da fonteTaylor, Rocky S., Ian J. Jordaan, Chuanke Li e Denise Sudom. "Local Design Pressures for Structures in Ice: Analysis of Full-Scale Data". Journal of Offshore Mechanics and Arctic Engineering 132, n.º 3 (17 de junho de 2010). http://dx.doi.org/10.1115/1.4000504.
Texto completo da fonte