Artigos de revistas sobre o tema "OER reaction"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "OER reaction".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Rahman, Sheikh Tareq, Kyong Yop Rhee e Soo-Jin Park. "Nanostructured multifunctional electrocatalysts for efficient energy conversion systems: Recent perspectives". Nanotechnology Reviews 10, n.º 1 (1 de janeiro de 2021): 137–57. http://dx.doi.org/10.1515/ntrev-2021-0008.
Texto completo da fonteYan, Zhenwei, Shuaihui Guo, Zhaojun Tan, Lijun Wang, Gang Li, Mingqi Tang, Zaiqiang Feng, Xianjie Yuan, Yingjia Wang e Bin Cao. "Research Advances of Non-Noble Metal Catalysts for Oxygen Evolution Reaction in Acid". Materials 17, n.º 7 (3 de abril de 2024): 1637. http://dx.doi.org/10.3390/ma17071637.
Texto completo da fonteMorales, Dulce M., Mariya A. Kazakova, Maximilian Purcel, Justus Masa e Wolfgang Schuhmann. "The sum is more than its parts: stability of MnFe oxide nanoparticles supported on oxygen-functionalized multi-walled carbon nanotubes at alternating oxygen reduction reaction and oxygen evolution reaction conditions". Journal of Solid State Electrochemistry 24, n.º 11-12 (1 de junho de 2020): 2901–6. http://dx.doi.org/10.1007/s10008-020-04667-2.
Texto completo da fonteHong, Yu-Rim, Sungwook Mhin, Jiseok Kwon, Won-Sik Han, Taeseup Song e HyukSu Han. "Synthesis of transition metal sulfide and reduced graphene oxide hybrids as efficient electrocatalysts for oxygen evolution reactions". Royal Society Open Science 5, n.º 9 (setembro de 2018): 180927. http://dx.doi.org/10.1098/rsos.180927.
Texto completo da fonteKim, Yohan, Seongmin Kim, Minyoung Shim, Yusik Oh, Kug-Seung Lee, Yousung Jung e Hye Ryung Byon. "Alteration of Oxygen Evolution Mechanisms in Layered LiCoO2 Structures By Intercalation of Alkali Metal Ions". ECS Meeting Abstracts MA2022-01, n.º 34 (7 de julho de 2022): 1356. http://dx.doi.org/10.1149/ma2022-01341356mtgabs.
Texto completo da fonteWan, Xin, Yingjie Song, Hua Zhou e Mingfei Shao. "Layered Double Hydroxides for Oxygen Evolution Reaction towards Efficient Hydrogen Generation". Energy Material Advances 2022 (7 de setembro de 2022): 1–17. http://dx.doi.org/10.34133/2022/9842610.
Texto completo da fonteFukushima, Tomohiro, Masaki Itatani e Kei Murakoshi. "(Invited) Evaluation of Oxygen Evolution Reaction Electrodes through Machine-Learning Analysis and in-Situ Electrochemical Spectroscopy". ECS Meeting Abstracts MA2024-02, n.º 59 (22 de novembro de 2024): 4023. https://doi.org/10.1149/ma2024-02594023mtgabs.
Texto completo da fonteChae, Sangwoo, Akihito Shio, Tomoya Kishida, Kosuke Furutono, Yumi Kojima, Gasidit Panomsuwan e Takahiro Ishizaki. "Synthesis of High-Entropy Perovskite Hydroxides as Bifunctional Electrocatalysts for Oxygen Evolution Reaction and Oxygen Reduction Reaction". Materials 17, n.º 12 (17 de junho de 2024): 2963. http://dx.doi.org/10.3390/ma17122963.
Texto completo da fonteLin, Shiru, Haoxiang Xu, Yekun Wang, Xiao Cheng Zeng e Zhongfang Chen. "Directly predicting limiting potentials from easily obtainable physical properties of graphene-supported single-atom electrocatalysts by machine learning". Journal of Materials Chemistry A 8, n.º 11 (2020): 5663–70. http://dx.doi.org/10.1039/c9ta13404b.
Texto completo da fonteWu, Hengbo, Jie Wang, Wei Jin e Zexing Wu. "Recent development of two-dimensional metal–organic framework derived electrocatalysts for hydrogen and oxygen electrocatalysis". Nanoscale 12, n.º 36 (2020): 18497–522. http://dx.doi.org/10.1039/d0nr04458j.
Texto completo da fonteÖztürk, Secil, Yu-Xuan Xiao, Dennis Dietrich, Beatriz Giesen, Juri Barthel, Jie Ying, Xiao-Yu Yang e Christoph Janiak. "Nickel nanoparticles supported on a covalent triazine framework as electrocatalyst for oxygen evolution reaction and oxygen reduction reactions". Beilstein Journal of Nanotechnology 11 (11 de maio de 2020): 770–81. http://dx.doi.org/10.3762/bjnano.11.62.
Texto completo da fonteJeon, Jaeeun, Kyoung Ryeol Park, Kang Min Kim, Daehyeon Ko, HyukSu Han, Nuri Oh, Sunghwan Yeo, Chisung Ahn e Sungwook Mhin. "CoFeS2@CoS2 Nanocubes Entangled with CNT for Efficient Bifunctional Performance for Oxygen Evolution and Oxygen Reduction Reactions". Nanomaterials 12, n.º 6 (16 de março de 2022): 983. http://dx.doi.org/10.3390/nano12060983.
Texto completo da fonteYao, Bin, Youzhou He, Song Wang, Hongfei Sun e Xingyan Liu. "Recent Advances in Porphyrin-Based Systems for Electrochemical Oxygen Evolution Reaction". International Journal of Molecular Sciences 23, n.º 11 (27 de maio de 2022): 6036. http://dx.doi.org/10.3390/ijms23116036.
Texto completo da fonteXu, Junhua, Daobin Liu, Carmen Lee, Pierre Feydi, Marlene Chapuis, Jing Yu, Emmanuel Billy, Qingyu Yan e Jean-Christophe P. Gabriel. "Efficient Electrocatalyst Nanoparticles from Upcycled Class II Capacitors". Nanomaterials 12, n.º 15 (5 de agosto de 2022): 2697. http://dx.doi.org/10.3390/nano12152697.
Texto completo da fonteKim, Jeheon, Tomohiro Fukushima, Ruifeng Zhou e Kei Murakoshi. "Revealing High Oxygen Evolution Catalytic Activity of Fluorine-Doped Carbon in Alkaline Media". Materials 12, n.º 2 (10 de janeiro de 2019): 211. http://dx.doi.org/10.3390/ma12020211.
Texto completo da fonteSui, Chenxi, Kai Chen, Liming Zhao, Li Zhou e Qu-Quan Wang. "MoS2-modified porous gas diffusion layer with air–solid–liquid interface for efficient electrocatalytic water splitting". Nanoscale 10, n.º 32 (2018): 15324–31. http://dx.doi.org/10.1039/c8nr04082f.
Texto completo da fonteIkezawa, Atsunori, Kotaro Seki e Hajime Arai. "Rational Placement of Catalysts for Oxygen Reduction and Evolution Reactions Based on the Reaction Sites in Porous Gas Diffusion Electrodes". ECS Meeting Abstracts MA2022-02, n.º 4 (9 de outubro de 2022): 522. http://dx.doi.org/10.1149/ma2022-024522mtgabs.
Texto completo da fonteMilikić, Jadranka, Aldona Balčiūnaitė, Zita Sukackienė, Dušan Mladenović, Diogo M. F. Santos, Loreta Tamašauskaitė-Tamašiūnaitė e Biljana Šljukić. "Bimetallic Co-Based (CoM, M = Mo, Fe, Mn) Coatings for High-Efficiency Water Splitting". Materials 14, n.º 1 (28 de dezembro de 2020): 92. http://dx.doi.org/10.3390/ma14010092.
Texto completo da fonteChen, Xiaodong, Jianqiao Liu, Tiefeng Yuan, Zhiyuan Zhang, Chunyu Song, Shuai Yang, Xin Gao, Nannan Wang e Lifeng Cui. "Recent advances in earth-abundant first-row transition metal (Fe, Co and Ni)-based electrocatalysts for the oxygen evolution reaction". Energy Materials 2, n.º 4 (2022): 28. http://dx.doi.org/10.20517/energymater.2022.30.
Texto completo da fonteElbaz, Lior, e Wenjamin Moschkowitsch. "Electrocatalyzing Oxygen Evolution Reaction with Nifeooh Aerogels". ECS Meeting Abstracts MA2022-02, n.º 44 (9 de outubro de 2022): 1680. http://dx.doi.org/10.1149/ma2022-02441680mtgabs.
Texto completo da fonteDymerska, Anna, Wojciech Kukułka, Marcin Biegun e Ewa Mijowska. "Spinel of Nickel-Cobalt Oxide with Rod-Like Architecture as Electrocatalyst for Oxygen Evolution Reaction". Materials 13, n.º 18 (4 de setembro de 2020): 3918. http://dx.doi.org/10.3390/ma13183918.
Texto completo da fonteGarcía Caballero, Ariadna D., e Jesus Adrián Diaz-Real. "Alternative Technique to RDE to Evaluate Photoelectrocatalysts for ORR". ECS Meeting Abstracts MA2024-01, n.º 44 (9 de agosto de 2024): 2438. http://dx.doi.org/10.1149/ma2024-01442438mtgabs.
Texto completo da fonteAsad, Muhammad, Afzal Shah, Faiza Jan Iftikhar, Rafia Nimal, Jan Nisar e Muhammad Abid Zia. "Development of a Binder-Free Tetra-Metallic Oxide Electrocatalyst for Efficient Oxygen Evolution Reaction". Sustainable Chemistry 3, n.º 3 (21 de junho de 2022): 286–99. http://dx.doi.org/10.3390/suschem3030018.
Texto completo da fonteKim, Kyung-Hwan, e Yun-Hyuk Choi. "Surface oxidation of cobalt carbonate and oxide nanowires by electrocatalytic oxygen evolution reaction in alkaline solution". Materials Research Express 9, n.º 3 (1 de março de 2022): 034001. http://dx.doi.org/10.1088/2053-1591/ac5f89.
Texto completo da fontePuthiyapura, Vinod Kumar, Christopher Mark Zalitis e James Stevens. "Gas Diffusion Electrode for Oxygen Evolution Reaction Catalyst Testing". ECS Meeting Abstracts MA2023-02, n.º 37 (22 de dezembro de 2023): 1726. http://dx.doi.org/10.1149/ma2023-02371726mtgabs.
Texto completo da fonteShafath, Sadiyah, Khulood Logade, Anand Kumar e Ibrahim Abu Reesh. "(Digital Presentation) Multifunctional Lanthanum Perovskite Electrocatalysts (LaMnxCo1-xO3 (0≤x≤1)) for Alkaline Medium Methanol Oxidation and Oxygen Catalysis". ECS Meeting Abstracts MA2022-02, n.º 43 (9 de outubro de 2022): 1629. http://dx.doi.org/10.1149/ma2022-02431629mtgabs.
Texto completo da fonteZhang, Pengfei, Hongmei Qiu, Huicong Li, Jiangang He, Yingying Xu e Rongming Wang. "Nonmetallic Active Sites on Nickel Phosphide in Oxygen Evolution Reaction". Nanomaterials 12, n.º 7 (29 de março de 2022): 1130. http://dx.doi.org/10.3390/nano12071130.
Texto completo da fonteGeppert, Janis, Philipp Röse e Ulrike Krewer. "The Microkinetic Performance Barriers of Ruthenium and Iridium Oxides during the Electrocatalytic Oxygen Evolution Reaction". ECS Meeting Abstracts MA2022-01, n.º 34 (7 de julho de 2022): 1370. http://dx.doi.org/10.1149/ma2022-01341370mtgabs.
Texto completo da fonteElbaz, Lior. "(Keynote) Development of Advanced High Surface Area Metal Oxide Aerogels for Oxygen Evolution Reaction Electrocatalysis". ECS Meeting Abstracts MA2023-02, n.º 58 (22 de dezembro de 2023): 2793. http://dx.doi.org/10.1149/ma2023-02582793mtgabs.
Texto completo da fonteGao, Chang, Haiyu Yao, Peijie Wang, Min Zhu, Xue-Rong Shi e Shusheng Xu. "Carbon-Based Composites for Oxygen Evolution Reaction Electrocatalysts: Design, Fabrication, and Application". Materials 17, n.º 10 (11 de maio de 2024): 2265. http://dx.doi.org/10.3390/ma17102265.
Texto completo da fonteKim, Myeong-Geun, e Sung Jong Yoo. "Surface Reconstruction of Iridium Nanoparticles for Enhanced Oxygen Evolution Reaction in Alkaline Medium". ECS Meeting Abstracts MA2022-01, n.º 34 (7 de julho de 2022): 1400. http://dx.doi.org/10.1149/ma2022-01341400mtgabs.
Texto completo da fonteDogutan, Dilek K., D. Kwabena Bediako, Daniel J. Graham, Christopher M. Lemon e Daniel G. Nocera. "Proton-coupled electron transfer chemistry of hangman macrocycles: Hydrogen and oxygen evolution reactions". Journal of Porphyrins and Phthalocyanines 19, n.º 01-03 (janeiro de 2015): 1–8. http://dx.doi.org/10.1142/s1088424614501016.
Texto completo da fonteChoi, Yun-Hyuk. "Electrocatalytic Activities of High-Entropy Oxides for the Oxygen Evolution Reaction". ECS Meeting Abstracts MA2023-02, n.º 54 (22 de dezembro de 2023): 2604. http://dx.doi.org/10.1149/ma2023-02542604mtgabs.
Texto completo da fonteEskandrani, Areej A., Shimaa M. Ali e Hibah M. Al-Otaibi. "Study of the Oxygen Evolution Reaction at Strontium Palladium Perovskite Electrocatalyst in Acidic Medium". International Journal of Molecular Sciences 21, n.º 11 (27 de maio de 2020): 3785. http://dx.doi.org/10.3390/ijms21113785.
Texto completo da fonteVitale-Sullivan, Molly E., Quinn Quinn Carvalho e Kelsey A. Stoerzinger. "Facet-Dependent Selectivity of Rutile IrO2 for Oxygen and Chlorine Evolution Reactions". ECS Meeting Abstracts MA2023-01, n.º 50 (28 de agosto de 2023): 2577. http://dx.doi.org/10.1149/ma2023-01502577mtgabs.
Texto completo da fonteCheng, J., P. Ganesan, Z. Wang, M. Zhang, G. Zhang, N. Maeda, J. Matsuda, M. Yamauchi, B. Chi e N. Nakashima. "Bifunctional electrochemical properties of La0.8Sr0.2Co0.8M0.2O3−δ (M = Ni, Fe, Mn, and Cu): efficient elemental doping based on a structural and pH-dependent study". Materials Advances 3, n.º 1 (2022): 272–81. http://dx.doi.org/10.1039/d1ma00632k.
Texto completo da fonteYin, Shikang, Xiaoxue Zhao, Enhui Jiang, Yan Yan, Peng Zhou e Pengwei Huo. "Boosting water decomposition by sulfur vacancies for efficient CO2 photoreduction". Energy & Environmental Science 15, n.º 4 (2022): 1556–62. http://dx.doi.org/10.1039/d1ee03764a.
Texto completo da fonteLi, Yaxin, Xin Yu, Juan Gao e Yurong Ma. "Hierarchical Ni2P/Zn-Ni-P Nanosheet Array for Efficient Energy-Saving Hydrogen Evolution and Hydrazine Oxidation". Journal of Materials Chemistry A, 2023. http://dx.doi.org/10.1039/d2ta08366c.
Texto completo da fonteWang, Zeyu, William A. Goddard e Hai Xiao. "Potential-dependent transition of reaction mechanisms for oxygen evolution on layered double hydroxides". Nature Communications 14, n.º 1 (15 de julho de 2023). http://dx.doi.org/10.1038/s41467-023-40011-8.
Texto completo da fonteMaduraiveeran, Govindhan. "Transition metal nanomaterial-based electrocatalysts for water and CO2 electrolysis: preparation, catalytic activity, and prospects". Frontiers in Energy Research 12 (24 de outubro de 2024). http://dx.doi.org/10.3389/fenrg.2024.1433103.
Texto completo da fonteChen, Xiaodong, Zhiyuan Zhang, Ya Chen, Runjing Xu, Chunyu Song, Tiefeng Yuan, Wenshuai Tang, Xin Gao, Nannan Wang e Lifeng Cui. "Research advances in earth-abundant-element-based electrocatalysts for oxygen evolution reaction and oxygen reduction reaction". Energy Materials, 2023. http://dx.doi.org/10.20517/energymater.2023.12.
Texto completo da fonte., Krishankant, Aashi Chauhan, Zubair Ahmed, A. Srinivasan, Ashish Gaur, Rajdeep Kaur e Vivek Bagchi. "Nano-interfaced tungsten oxide inwrought with layer double hydroxides for oxygen evolution reaction". Sustainable Energy & Fuels, 2022. http://dx.doi.org/10.1039/d2se00929c.
Texto completo da fonteHuang, Xianggang, Xin Wang, Mengling Zhang, Qilei Jiang, Zheng Qin, Yingxin Liu, Yan Hou, Xueqin Cao e Hongwei Gu. "Manganese- and Selenium-codoping CeO2@Co3O4 Porous Core-shell Nanospheres for Enhanced Oxygen Evolution Reaction". Energy Advances, 2023. http://dx.doi.org/10.1039/d2ya00315e.
Texto completo da fonteAbdollahi, Maliheh, Sara Al Sbei, Miriam A. Rosenbaum e Falk Harnisch. "The oxygen dilemma: The challenge of the anode reaction for microbial electrosynthesis from CO2". Frontiers in Microbiology 13 (3 de agosto de 2022). http://dx.doi.org/10.3389/fmicb.2022.947550.
Texto completo da fonteHuang, Shih‐Ching, Hsiang‐Chun Yu, Chun‐Kuo Peng, Yan‐Gu Lin e Chia‐Yu Lin. "P‐Doped NiFe Alloy‐Based Oxygen Evolution Electrocatalyst for Efficient and Stable Seawater Splitting and Organic Electrosynthesis at Neutral pH". Small, 24 de dezembro de 2024. https://doi.org/10.1002/smll.202408957.
Texto completo da fonteXiao, Zhifei, Haoliang Huang, Sixia Hu, Zhuanglin Weng, Yuping Huang, Bing Du, Xierong Zeng, Yuying Meng e Chuanwei Huang. "Bifunctional Square‐Planar NiO4 Coordination of Topotactic LaNiO2.0 Films for Efficient Oxygen Evolution Reaction". Small Methods, 27 de novembro de 2023. http://dx.doi.org/10.1002/smtd.202300793.
Texto completo da fonteDeng, Bohan, Guang-Qiang Yu, Wei Zhao, Yuanzheng Long, Cheng Yang, Peng Du, Xian He et al. "A Self-Circulating Pathway for Oxygen Evolution Reaction". Energy & Environmental Science, 2023. http://dx.doi.org/10.1039/d3ee02360e.
Texto completo da fonteWu, Zhong. "Transition Metal Selenides for Oxygen Evolution Reaction". Energy Technology, 3 de abril de 2024. http://dx.doi.org/10.1002/ente.202301574.
Texto completo da fonteHu, Mengyu, Hanzhi Yu, Chong Chen, Yukun Zhang, Changjiang Hu e Jun Ma. "Gamma-rays induced strong coupling between Ru nanoparticle and cobalt-based metal organic framework nanolayer for methanol oxidation and hydrogen evolution". New Journal of Chemistry, 2024. http://dx.doi.org/10.1039/d4nj04418e.
Texto completo da fonteChen, Ligang, Wei Zhao, Juntao Zhang, Min Liu, Yin Jia, Ruzhi Wang e Maorong Chai. "Recent Research on Iridium‐Based Electrocatalysts for Acidic Oxygen Evolution Reaction from the Origin of Reaction Mechanism". Small, 28 de junho de 2024. http://dx.doi.org/10.1002/smll.202403845.
Texto completo da fonte