Artigos de revistas sobre o tema "OER reaction"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "OER reaction".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Rahman, Sheikh Tareq, Kyong Yop Rhee, and Soo-Jin Park. "Nanostructured multifunctional electrocatalysts for efficient energy conversion systems: Recent perspectives." Nanotechnology Reviews 10, no. 1 (2021): 137–57. http://dx.doi.org/10.1515/ntrev-2021-0008.
Texto completo da fonteYan, Zhenwei, Shuaihui Guo, Zhaojun Tan, et al. "Research Advances of Non-Noble Metal Catalysts for Oxygen Evolution Reaction in Acid." Materials 17, no. 7 (2024): 1637. http://dx.doi.org/10.3390/ma17071637.
Texto completo da fonteMorales, Dulce M., Mariya A. Kazakova, Maximilian Purcel, Justus Masa, and Wolfgang Schuhmann. "The sum is more than its parts: stability of MnFe oxide nanoparticles supported on oxygen-functionalized multi-walled carbon nanotubes at alternating oxygen reduction reaction and oxygen evolution reaction conditions." Journal of Solid State Electrochemistry 24, no. 11-12 (2020): 2901–6. http://dx.doi.org/10.1007/s10008-020-04667-2.
Texto completo da fonteHong, Yu-Rim, Sungwook Mhin, Jiseok Kwon, Won-Sik Han, Taeseup Song, and HyukSu Han. "Synthesis of transition metal sulfide and reduced graphene oxide hybrids as efficient electrocatalysts for oxygen evolution reactions." Royal Society Open Science 5, no. 9 (2018): 180927. http://dx.doi.org/10.1098/rsos.180927.
Texto completo da fonteKim, Yohan, Seongmin Kim, Minyoung Shim, et al. "Alteration of Oxygen Evolution Mechanisms in Layered LiCoO2 Structures By Intercalation of Alkali Metal Ions." ECS Meeting Abstracts MA2022-01, no. 34 (2022): 1356. http://dx.doi.org/10.1149/ma2022-01341356mtgabs.
Texto completo da fonteWan, Xin, Yingjie Song, Hua Zhou, and Mingfei Shao. "Layered Double Hydroxides for Oxygen Evolution Reaction towards Efficient Hydrogen Generation." Energy Material Advances 2022 (September 7, 2022): 1–17. http://dx.doi.org/10.34133/2022/9842610.
Texto completo da fonteFukushima, Tomohiro, Masaki Itatani, and Kei Murakoshi. "(Invited) Evaluation of Oxygen Evolution Reaction Electrodes through Machine-Learning Analysis and in-Situ Electrochemical Spectroscopy." ECS Meeting Abstracts MA2024-02, no. 59 (2024): 4023. https://doi.org/10.1149/ma2024-02594023mtgabs.
Texto completo da fonteChae, Sangwoo, Akihito Shio, Tomoya Kishida, et al. "Synthesis of High-Entropy Perovskite Hydroxides as Bifunctional Electrocatalysts for Oxygen Evolution Reaction and Oxygen Reduction Reaction." Materials 17, no. 12 (2024): 2963. http://dx.doi.org/10.3390/ma17122963.
Texto completo da fonteLin, Shiru, Haoxiang Xu, Yekun Wang, Xiao Cheng Zeng, and Zhongfang Chen. "Directly predicting limiting potentials from easily obtainable physical properties of graphene-supported single-atom electrocatalysts by machine learning." Journal of Materials Chemistry A 8, no. 11 (2020): 5663–70. http://dx.doi.org/10.1039/c9ta13404b.
Texto completo da fonteWu, Hengbo, Jie Wang, Wei Jin, and Zexing Wu. "Recent development of two-dimensional metal–organic framework derived electrocatalysts for hydrogen and oxygen electrocatalysis." Nanoscale 12, no. 36 (2020): 18497–522. http://dx.doi.org/10.1039/d0nr04458j.
Texto completo da fonteÖztürk, Secil, Yu-Xuan Xiao, Dennis Dietrich, et al. "Nickel nanoparticles supported on a covalent triazine framework as electrocatalyst for oxygen evolution reaction and oxygen reduction reactions." Beilstein Journal of Nanotechnology 11 (May 11, 2020): 770–81. http://dx.doi.org/10.3762/bjnano.11.62.
Texto completo da fonteJeon, Jaeeun, Kyoung Ryeol Park, Kang Min Kim, et al. "CoFeS2@CoS2 Nanocubes Entangled with CNT for Efficient Bifunctional Performance for Oxygen Evolution and Oxygen Reduction Reactions." Nanomaterials 12, no. 6 (2022): 983. http://dx.doi.org/10.3390/nano12060983.
Texto completo da fonteYao, Bin, Youzhou He, Song Wang, Hongfei Sun, and Xingyan Liu. "Recent Advances in Porphyrin-Based Systems for Electrochemical Oxygen Evolution Reaction." International Journal of Molecular Sciences 23, no. 11 (2022): 6036. http://dx.doi.org/10.3390/ijms23116036.
Texto completo da fonteSui, Chenxi, Kai Chen, Liming Zhao, Li Zhou, and Qu-Quan Wang. "MoS2-modified porous gas diffusion layer with air–solid–liquid interface for efficient electrocatalytic water splitting." Nanoscale 10, no. 32 (2018): 15324–31. http://dx.doi.org/10.1039/c8nr04082f.
Texto completo da fonteXu, Junhua, Daobin Liu, Carmen Lee, et al. "Efficient Electrocatalyst Nanoparticles from Upcycled Class II Capacitors." Nanomaterials 12, no. 15 (2022): 2697. http://dx.doi.org/10.3390/nano12152697.
Texto completo da fonteKim, Jeheon, Tomohiro Fukushima, Ruifeng Zhou, and Kei Murakoshi. "Revealing High Oxygen Evolution Catalytic Activity of Fluorine-Doped Carbon in Alkaline Media." Materials 12, no. 2 (2019): 211. http://dx.doi.org/10.3390/ma12020211.
Texto completo da fonteIkezawa, Atsunori, Kotaro Seki, and Hajime Arai. "Rational Placement of Catalysts for Oxygen Reduction and Evolution Reactions Based on the Reaction Sites in Porous Gas Diffusion Electrodes." ECS Meeting Abstracts MA2022-02, no. 4 (2022): 522. http://dx.doi.org/10.1149/ma2022-024522mtgabs.
Texto completo da fonteChen, Xiaodong, Jianqiao Liu, Tiefeng Yuan, et al. "Recent advances in earth-abundant first-row transition metal (Fe, Co and Ni)-based electrocatalysts for the oxygen evolution reaction." Energy Materials 2, no. 4 (2022): 28. http://dx.doi.org/10.20517/energymater.2022.30.
Texto completo da fonteMilikić, Jadranka, Aldona Balčiūnaitė, Zita Sukackienė, et al. "Bimetallic Co-Based (CoM, M = Mo, Fe, Mn) Coatings for High-Efficiency Water Splitting." Materials 14, no. 1 (2020): 92. http://dx.doi.org/10.3390/ma14010092.
Texto completo da fonteBošnjaković, Jovana, Maja Stevanović, Marija Mihailović, et al. "Activity and Operational Loss of IrO2-Ta2O5/Ti Anodes During Oxygen Evolution in Acidic Solutions." Metals 15, no. 7 (2025): 721. https://doi.org/10.3390/met15070721.
Texto completo da fonteYao, Qiufang, Yanping Xiao, Haoqing Wang, Haobin Zhong, and Tongtong Wang. "Multi-Functional Amorphous Nickel Phosphide Electrocatalytic Reduction of Nitrate for Ammonia Production: Unraveling the Anode-Driven Enhancement Mechanism." Sustainability 17, no. 9 (2025): 3835. https://doi.org/10.3390/su17093835.
Texto completo da fonteDymerska, Anna, Wojciech Kukułka, Marcin Biegun, and Ewa Mijowska. "Spinel of Nickel-Cobalt Oxide with Rod-Like Architecture as Electrocatalyst for Oxygen Evolution Reaction." Materials 13, no. 18 (2020): 3918. http://dx.doi.org/10.3390/ma13183918.
Texto completo da fonteGarcía Caballero, Ariadna D., and Jesus Adrián Diaz-Real. "Alternative Technique to RDE to Evaluate Photoelectrocatalysts for ORR." ECS Meeting Abstracts MA2024-01, no. 44 (2024): 2438. http://dx.doi.org/10.1149/ma2024-01442438mtgabs.
Texto completo da fonteElbaz, Lior, and Wenjamin Moschkowitsch. "Electrocatalyzing Oxygen Evolution Reaction with Nifeooh Aerogels." ECS Meeting Abstracts MA2022-02, no. 44 (2022): 1680. http://dx.doi.org/10.1149/ma2022-02441680mtgabs.
Texto completo da fonteFukushima, Tomohiro. "(Invited) Evaluation of Oxygen Evolution Activity from the Intermediate Analysis." ECS Meeting Abstracts MA2025-01, no. 39 (2025): 2034. https://doi.org/10.1149/ma2025-01392034mtgabs.
Texto completo da fonteSu, Zhaochang, Biyi Huang, Fan Liao, and Jiangping Peng. "Through the anodic oxidation of sodium sulfite aqueous solution to achieve energy-saving cathodic hydrogen production." Journal of Physics: Conference Series 2975, no. 1 (2025): 012002. https://doi.org/10.1088/1742-6596/2975/1/012002.
Texto completo da fonteShafath, Sadiyah, Khulood Logade, Anand Kumar, and Ibrahim Abu Reesh. "(Digital Presentation) Multifunctional Lanthanum Perovskite Electrocatalysts (LaMnxCo1-xO3 (0≤x≤1)) for Alkaline Medium Methanol Oxidation and Oxygen Catalysis." ECS Meeting Abstracts MA2022-02, no. 43 (2022): 1629. http://dx.doi.org/10.1149/ma2022-02431629mtgabs.
Texto completo da fonteCheng, J., P. Ganesan, Z. Wang та ін. "Bifunctional electrochemical properties of La0.8Sr0.2Co0.8M0.2O3−δ (M = Ni, Fe, Mn, and Cu): efficient elemental doping based on a structural and pH-dependent study". Materials Advances 3, № 1 (2022): 272–81. http://dx.doi.org/10.1039/d1ma00632k.
Texto completo da fonteYin, Shikang, Xiaoxue Zhao, Enhui Jiang, Yan Yan, Peng Zhou, and Pengwei Huo. "Boosting water decomposition by sulfur vacancies for efficient CO2 photoreduction." Energy & Environmental Science 15, no. 4 (2022): 1556–62. http://dx.doi.org/10.1039/d1ee03764a.
Texto completo da fonteHongxia, Wang, H. L. Zhang Kelvin, P. Hofmann Jan, A. de la Peña O'Shea Victor, and E. Oropeza Freddy. "The electronic structure of transition metal oxides for oxygen evolution reaction." Journal of Materials Chemistry A 9, no. 2021 (2021): 19465. https://doi.org/10.5281/zenodo.7692408.
Texto completo da fonteXie, Wenli, Bin Cui, Desheng Liu, Haicai Huang, and Chuanlu Yang. "Rational Design of Covalent Organic Frameworks-Based Single Atom Catalysts for Oxygen Evolution Reaction and Oxygen Reduction Reaction." Molecules 30, no. 7 (2025): 1505. https://doi.org/10.3390/molecules30071505.
Texto completo da fonteTrębala, Michał, and Agata Łamacz. "Modern Catalytic Materials for the Oxygen Evolution Reaction." Molecules 30, no. 8 (2025): 1656. https://doi.org/10.3390/molecules30081656.
Texto completo da fonteAsad, Muhammad, Afzal Shah, Faiza Jan Iftikhar, Rafia Nimal, Jan Nisar, and Muhammad Abid Zia. "Development of a Binder-Free Tetra-Metallic Oxide Electrocatalyst for Efficient Oxygen Evolution Reaction." Sustainable Chemistry 3, no. 3 (2022): 286–99. http://dx.doi.org/10.3390/suschem3030018.
Texto completo da fonteElbaz, Lior. "(Keynote) Development of Advanced High Surface Area Metal Oxide Aerogels for Oxygen Evolution Reaction Electrocatalysis." ECS Meeting Abstracts MA2023-02, no. 58 (2023): 2793. http://dx.doi.org/10.1149/ma2023-02582793mtgabs.
Texto completo da fonteKim, Kyung-Hwan, and Yun-Hyuk Choi. "Surface oxidation of cobalt carbonate and oxide nanowires by electrocatalytic oxygen evolution reaction in alkaline solution." Materials Research Express 9, no. 3 (2022): 034001. http://dx.doi.org/10.1088/2053-1591/ac5f89.
Texto completo da fonteLi, Yaxin, Xin Yu, Juan Gao, and Yurong Ma. "Hierarchical Ni2P/Zn-Ni-P Nanosheet Array for Efficient Energy-Saving Hydrogen Evolution and Hydrazine Oxidation." Journal of Materials Chemistry A, 2023. http://dx.doi.org/10.1039/d2ta08366c.
Texto completo da fonteWang, Zeyu, William A. Goddard, and Hai Xiao. "Potential-dependent transition of reaction mechanisms for oxygen evolution on layered double hydroxides." Nature Communications 14, no. 1 (2023). http://dx.doi.org/10.1038/s41467-023-40011-8.
Texto completo da fonteMaduraiveeran, Govindhan. "Transition metal nanomaterial-based electrocatalysts for water and CO2 electrolysis: preparation, catalytic activity, and prospects." Frontiers in Energy Research 12 (October 24, 2024). http://dx.doi.org/10.3389/fenrg.2024.1433103.
Texto completo da fonteYu, Jiayang, Tianmi Tang, Jingqi Guan, and Yupeng Guo. "Improving the oxygen evolution performance of iron–manganese oxyhydroxides by Cr doping." Chemical Communications, 2025. https://doi.org/10.1039/d5cc00389j.
Texto completo da fonte., Krishankant, Aashi Chauhan, Zubair Ahmed, et al. "Nano-interfaced tungsten oxide inwrought with layer double hydroxides for oxygen evolution reaction." Sustainable Energy & Fuels, 2022. http://dx.doi.org/10.1039/d2se00929c.
Texto completo da fonteChen, Xiaodong, Zhiyuan Zhang, Ya Chen, et al. "Research advances in earth-abundant-element-based electrocatalysts for oxygen evolution reaction and oxygen reduction reaction." Energy Materials, 2023. http://dx.doi.org/10.20517/energymater.2023.12.
Texto completo da fonteHuang, Xianggang, Xin Wang, Mengling Zhang, et al. "Manganese- and Selenium-codoping CeO2@Co3O4 Porous Core-shell Nanospheres for Enhanced Oxygen Evolution Reaction." Energy Advances, 2023. http://dx.doi.org/10.1039/d2ya00315e.
Texto completo da fonteAbdollahi, Maliheh, Sara Al Sbei, Miriam A. Rosenbaum, and Falk Harnisch. "The oxygen dilemma: The challenge of the anode reaction for microbial electrosynthesis from CO2." Frontiers in Microbiology 13 (August 3, 2022). http://dx.doi.org/10.3389/fmicb.2022.947550.
Texto completo da fonteHuang, Shih‐Ching, Hsiang‐Chun Yu, Chun‐Kuo Peng, Yan‐Gu Lin, and Chia‐Yu Lin. "P‐Doped NiFe Alloy‐Based Oxygen Evolution Electrocatalyst for Efficient and Stable Seawater Splitting and Organic Electrosynthesis at Neutral pH." Small, December 24, 2024. https://doi.org/10.1002/smll.202408957.
Texto completo da fonteXiao, Zhifei, Haoliang Huang, Sixia Hu, et al. "Bifunctional Square‐Planar NiO4 Coordination of Topotactic LaNiO2.0 Films for Efficient Oxygen Evolution Reaction." Small Methods, November 27, 2023. http://dx.doi.org/10.1002/smtd.202300793.
Texto completo da fonteHu, Mengyu, Hanzhi Yu, Chong Chen, Yukun Zhang, Changjiang Hu, and Jun Ma. "Gamma-rays induced strong coupling between Ru nanoparticle and cobalt-based metal organic framework nanolayer for methanol oxidation and hydrogen evolution." New Journal of Chemistry, 2024. http://dx.doi.org/10.1039/d4nj04418e.
Texto completo da fonteDeng, Bohan, Guang-Qiang Yu, Wei Zhao, et al. "A Self-Circulating Pathway for Oxygen Evolution Reaction." Energy & Environmental Science, 2023. http://dx.doi.org/10.1039/d3ee02360e.
Texto completo da fonteWu, Zhong. "Transition Metal Selenides for Oxygen Evolution Reaction." Energy Technology, April 3, 2024. http://dx.doi.org/10.1002/ente.202301574.
Texto completo da fonteLi, Long, Zhanpeng Sheng, Qingqing Xiao, and qiang hu. "Co9S8 core-shell hollow spheres for enhanced oxygen evolution reaction and methanol oxidation reaction by sulfur vacancies engineering." Dalton Transactions, 2023. http://dx.doi.org/10.1039/d3dt03477a.
Texto completo da fonteLole, Gaurav, Vladimir Roddatis, Ulrich Ross, et al. "Dynamic observation of manganese adatom mobility at perovskite oxide catalyst interfaces with water." Communications Materials 1, no. 1 (2020). http://dx.doi.org/10.1038/s43246-020-00070-6.
Texto completo da fonte