Artigos de revistas sobre o tema "Ocean waves – – Mathematical models"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Ocean waves – – Mathematical models".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Drzewiecki, Marcin. "The Propagation of the Waves in the CTO S.A. Towing Tank". Polish Maritime Research 25, s1 (1 de maio de 2018): 22–28. http://dx.doi.org/10.2478/pomr-2018-0018.
Texto completo da fonteKrólicka, Agnieszka. "State equations in the mathematical model of dynamic behaviour of multihull floating unit". Polish Maritime Research 17, n.º 1 (1 de janeiro de 2010): 33–38. http://dx.doi.org/10.2478/v10012-010-0003-6.
Texto completo da fonteSmall, J., L. Shackleford e G. Pavey. "Ocean feature models − their use and effectiveness in ocean acoustic forecasting". Annales Geophysicae 15, n.º 1 (31 de janeiro de 1997): 101–12. http://dx.doi.org/10.1007/s00585-997-0101-7.
Texto completo da fonteQiao, Fangli, Yeli Yuan, Jia Deng, Dejun Dai e Zhenya Song. "Wave–turbulence interaction-induced vertical mixing and its effects in ocean and climate models". Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 374, n.º 2065 (13 de abril de 2016): 20150201. http://dx.doi.org/10.1098/rsta.2015.0201.
Texto completo da fonteLiaw, C. Y. "Numerical Modeling and Subharmonic Bifurcations of a Compliant Cylinder Exposed to Waves". Journal of Offshore Mechanics and Arctic Engineering 111, n.º 1 (1 de fevereiro de 1989): 29–36. http://dx.doi.org/10.1115/1.3257135.
Texto completo da fonteWang, Gang, Hong-Quan Yu e Jin-Hai Zheng. "EXPERIMENTAL STUDY OF GUIDED WAVES OVER THE OCEAN RIDGE". Coastal Engineering Proceedings, n.º 36 (30 de dezembro de 2018): 54. http://dx.doi.org/10.9753/icce.v36.waves.54.
Texto completo da fonteFrancescutto, Alberto, Gabriele Bulian e Claudio Lugni. "The Sixth International Stability Workshop was held in October 2002". Marine Technology and SNAME News 41, n.º 02 (1 de abril de 2004): 74–81. http://dx.doi.org/10.5957/mt1.2004.41.2.74.
Texto completo da fonteDahle, Emil Aall, e Dag Myrhaug. "Risk Analysis Applied to Capsize of Fishing Vessels". Marine Technology and SNAME News 32, n.º 04 (1 de outubro de 1995): 245–47. http://dx.doi.org/10.5957/mt1.1995.32.4.245.
Texto completo da fontePushkarev, A. N., e V. E. Zakharov. "SELF-SIMILAR AND LASER-LIKE REGIMES IN NUMERICAL MODELING OF HASSELMANN KINETIC EQUATION FOR OCEAN WAVES". XXII workshop of the Council of nonlinear dynamics of the Russian Academy of Sciences 47, n.º 1 (30 de abril de 2019): 103–6. http://dx.doi.org/10.29006/1564-2291.jor-2019.47(1).31.
Texto completo da fonteVeeresha, Pundikala, Haci Mehmet Baskonus e Wei Gao. "Strong Interacting Internal Waves in Rotating Ocean: Novel Fractional Approach". Axioms 10, n.º 2 (16 de junho de 2021): 123. http://dx.doi.org/10.3390/axioms10020123.
Texto completo da fontedi Martino, B., F. Flori, C. Giacomoni e P. Orenga. "Mathematical and Numerical Analysis of a Tsunami Problem". Mathematical Models and Methods in Applied Sciences 13, n.º 10 (outubro de 2003): 1489–514. http://dx.doi.org/10.1142/s0218202503003008.
Texto completo da fonteSclavounos, Paul D. "Karhunen–Loeve representation of stochastic ocean waves". Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 468, n.º 2145 (9 de maio de 2012): 2574–94. http://dx.doi.org/10.1098/rspa.2012.0063.
Texto completo da fontePierson, Willard J., e Azed Jean-Pierre. "Monte Carlo Simulations of Nonlinear Ocean Wave Records with Implications for Models of Breaking Waves". Journal of Ship Research 43, n.º 02 (1 de junho de 1999): 121–34. http://dx.doi.org/10.5957/jsr.1999.43.2.121.
Texto completo da fonteLin, Ray-Qing, Weijia Kuang e Arthur M. Reed. "Numerical Modeling of Nonlinear Interactions Between Ships and Surface Gravity Waves, Part 1: Ship Waves in Calm Water". Journal of Ship Research 49, n.º 01 (1 de março de 2005): 1–11. http://dx.doi.org/10.5957/jsr.2005.49.1.1.
Texto completo da fonteSquire, Vernon A. "A fresh look at how ocean waves and sea ice interact". Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 376, n.º 2129 (20 de agosto de 2018): 20170342. http://dx.doi.org/10.1098/rsta.2017.0342.
Texto completo da fonteKundu, Anjan, Abhik Mukherjee e Tapan Naskar. "Modelling rogue waves through exact dynamical lump soliton controlled by ocean currents". Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 470, n.º 2164 (8 de abril de 2014): 20130576. http://dx.doi.org/10.1098/rspa.2013.0576.
Texto completo da fontevan den Bremer, T. S., e Ø. Breivik. "Stokes drift". Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 376, n.º 2111 (11 de dezembro de 2017): 20170104. http://dx.doi.org/10.1098/rsta.2017.0104.
Texto completo da fonteAvila, Deivis, Graciliano Nicolás Marichal, Ramón Quiza e Felipe San Luis. "Prediction of Wave Energy Transformation Capability in Isolated Islands by Using the Monte Carlo Method". Journal of Marine Science and Engineering 9, n.º 9 (7 de setembro de 2021): 980. http://dx.doi.org/10.3390/jmse9090980.
Texto completo da fonteWang, Benlong, e Hua Liu. "Space–time behaviour of magnetic anomalies induced by tsunami waves in open ocean". Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 469, n.º 2157 (8 de setembro de 2013): 20130038. http://dx.doi.org/10.1098/rspa.2013.0038.
Texto completo da fonteLINTON, C. M. "Towards a three-dimensional model of wave–ice interaction in the marginal ice zone". Journal of Fluid Mechanics 662 (15 de outubro de 2010): 1–4. http://dx.doi.org/10.1017/s0022112010004258.
Texto completo da fonteDuran, Serbay, Asıf Yokuş, Hülya Durur e Doğan Kaya. "Refraction simulation of internal solitary waves for the fractional Benjamin–Ono equation in fluid dynamics". Modern Physics Letters B 35, n.º 26 (13 de agosto de 2021): 2150363. http://dx.doi.org/10.1142/s0217984921503632.
Texto completo da fonteXu, Chuan-Xiu, Sheng-Chun Piao, Shi-E. Yang, Hai-Gang Zhang e Li Li. "This Submission is for Special Issue on Underwater Acoustics: Perfectly Matched Layer Technique for Parabolic Equation Models in Ocean Acoustics". Journal of Computational Acoustics 25, n.º 01 (março de 2017): 1650021. http://dx.doi.org/10.1142/s0218396x16500211.
Texto completo da fonteGibson, R. S., e C. Swan. "The evolution of large ocean waves: the role of local and rapid spectral changes". Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 463, n.º 2077 (25 de julho de 2006): 21–48. http://dx.doi.org/10.1098/rspa.2006.1729.
Texto completo da fonteAmbrose, David M., Jerry L. Bona e David P. Nicholls. "On ill-posedness of truncated series models for water waves". Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 470, n.º 2166 (8 de junho de 2014): 20130849. http://dx.doi.org/10.1098/rspa.2013.0849.
Texto completo da fonteMeng, Zhongliang, Yanjun Liu, Jian Qin e Yun Chen. "Mathematical Modeling and Experimental Verification of a New Wave Energy Converter". Energies 14, n.º 1 (31 de dezembro de 2020): 177. http://dx.doi.org/10.3390/en14010177.
Texto completo da fonteEidsmoen, H. "Optimum Control of a Floating Wave-Energy Converter With Restricted Amplitude". Journal of Offshore Mechanics and Arctic Engineering 118, n.º 2 (1 de maio de 1996): 96–102. http://dx.doi.org/10.1115/1.2828829.
Texto completo da fonteKashiwagi, Masashi. "Hydrodynamic Study on Added Resistance Using Unsteady Wave Analysis". Journal of Ship Research 57, n.º 04 (1 de dezembro de 2013): 220–40. http://dx.doi.org/10.5957/jsr.2013.57.4.220.
Texto completo da fonteTorhaug, Rune, Steven R. Winterstein e Arne Braathen. "Nonlinear Ship Loads: Stochastic Models for Extreme Response". Journal of Ship Research 42, n.º 01 (1 de março de 1998): 46–55. http://dx.doi.org/10.5957/jsr.1998.42.1.46.
Texto completo da fonteOyejobi, Damilola O., Mohammed Jameel, Nor Hafizah Ramli Sulong e Niaz B. Khan. "Investigation of tendon dynamics effects on tension leg platform response in random seas". Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment 233, n.º 4 (16 de novembro de 2018): 1082–102. http://dx.doi.org/10.1177/1475090218811718.
Texto completo da fonteGRIGORIEVA, NATALIE S. "THE EFFECT OF OCEAN CURRENT ON SOUND PROPAGATION". Journal of Computational Acoustics 02, n.º 04 (dezembro de 1994): 441–51. http://dx.doi.org/10.1142/s0218396x94000257.
Texto completo da fonteRen, Yanwei, Huanhe Dong, Xinzhu Meng e Hongwei Yang. "Research on Time-Space Fractional Model for Gravity Waves in Baroclinic Atmosphere". Mathematical Problems in Engineering 2018 (24 de outubro de 2018): 1–14. http://dx.doi.org/10.1155/2018/1345346.
Texto completo da fonteMiyata, Hideaki, Makoto Kanai, Noriaki Yoshiyasu e Yohichi Furuno. "Diffraction Waves About an Advancing Wedge Model in Deep Water". Journal of Ship Research 34, n.º 02 (1 de junho de 1990): 105–22. http://dx.doi.org/10.5957/jsr.1990.34.2.105.
Texto completo da fonteAhmed, Sadia, e Huseyin Arslan. "Analysis of Underwater Acoustic Communication Channels". Marine Technology Society Journal 47, n.º 3 (1 de maio de 2013): 99–117. http://dx.doi.org/10.4031/mtsj.47.3.7.
Texto completo da fonteZilman, Gregory. "Forces Exerted on a Hovercraft by a Moving Pressure Distribution: Robustness of Mathematical Models". Journal of Ship Research 50, n.º 01 (1 de março de 2006): 38–48. http://dx.doi.org/10.5957/jsr.2006.50.1.38.
Texto completo da fonteWeymouth, Gabriel D., e Dick K. P. Yue. "Physics-Based Learning Models for Ship Hydrodynamics". Journal of Ship Research 57, n.º 01 (1 de março de 2013): 1–12. http://dx.doi.org/10.5957/jsr.2013.57.1.1.
Texto completo da fonteÅberg, Sofia. "Wave intensities and slopes in Lagrangian seas". Advances in Applied Probability 39, n.º 4 (dezembro de 2007): 1020–35. http://dx.doi.org/10.1239/aap/1198177237.
Texto completo da fonteFürth, Mirjam, Mingyi Tan, Zhi-Min Chen e Makoto Arai. "A Dissipative Green’s Function Approach to Modeling Gravity Waves behind Submerged Bodies". Journal of Ship Research 65, n.º 01 (17 de março de 2021): 72–85. http://dx.doi.org/10.5957/josr.08170054.
Texto completo da fonteJones, Alan F., e A. Hulme. "The Hydrodynamics of Water on Deck". Journal of Ship Research 31, n.º 02 (1 de junho de 1987): 125–35. http://dx.doi.org/10.5957/jsr.1987.31.2.125.
Texto completo da fonteJefferys, E. R. "Nonlinear Marine Structures With Random Excitation". Journal of Offshore Mechanics and Arctic Engineering 110, n.º 3 (1 de agosto de 1988): 246–53. http://dx.doi.org/10.1115/1.3257058.
Texto completo da fonteLei, Y., S. X. Zhao, X. Y. Zheng e W. Li. "Effects of Fish Nets on the Nonlinear Dynamic Performance of a Floating Offshore Wind Turbine Integrated with a Steel Fish Farming Cage". International Journal of Structural Stability and Dynamics 20, n.º 03 (março de 2020): 2050042. http://dx.doi.org/10.1142/s021945542050042x.
Texto completo da fonteWaniewski, T. A., C. E. Brennen e F. Raichlen. "Bow Wave Dynamics". Journal of Ship Research 46, n.º 01 (1 de março de 2002): 1–15. http://dx.doi.org/10.5957/jsr.2002.46.1.1.
Texto completo da fonteREEDER, D. BENJAMIN, LINUS Y. S. CHIU e CHI-FANG CHEN. "EXPERIMENTAL EVIDENCE OF HORIZONTAL REFRACTION BY NONLINEAR INTERNAL WAVES OF ELEVATION IN SHALLOW WATER IN THE SOUTH CHINA SEA: 3D VERSUS Nx2D ACOUSTIC PROPAGATION MODELING". Journal of Computational Acoustics 18, n.º 03 (setembro de 2010): 267–78. http://dx.doi.org/10.1142/s0218396x10004176.
Texto completo da fonteLiu, Wei-Qin, Luo-Nan Xiong, Guo-Wei Zhang, Meng Yang, Wei-Guo Wu e Xue-Min Song. "Research on Hydroelastic Response of an FMRC Hexagon Enclosed Platform". Symmetry 13, n.º 7 (22 de junho de 2021): 1110. http://dx.doi.org/10.3390/sym13071110.
Texto completo da fonteNAGEM, RAYMOND J., e DING LEE. "COUPLED 3D WAVE EQUATIONS WITH IRREGULAR FLUID-ELASTIC INTERFACE: THEORETICAL DEVELOPMENT". Journal of Computational Acoustics 10, n.º 04 (dezembro de 2002): 421–44. http://dx.doi.org/10.1142/s0218396x02001656.
Texto completo da fonteWei Yang, Hong, Min Guo e Hailun He. "Conservation Laws of Space-Time Fractional mZK Equation for Rossby Solitary Waves with Complete Coriolis Force". International Journal of Nonlinear Sciences and Numerical Simulation 20, n.º 1 (23 de fevereiro de 2019): 17–32. http://dx.doi.org/10.1515/ijnsns-2018-0026.
Texto completo da fonteZhang, Jian, Yanjun Liu, Jingwen Liu, Tongtong He e Yudong Xie. "Dynamic Characteristics of Magnetic Coupling in Horizontal Axis Wave Energy Device". Polish Maritime Research 24, s3 (27 de novembro de 2017): 165–70. http://dx.doi.org/10.1515/pomr-2017-0119.
Texto completo da fonteGoyal, Rushil, Kriti Singh e Arkal Vittal Hegde. "Quarter Circular Breakwater: Prediction of Transmission Using Multiple Regression and Artificial Neural Network". Marine Technology Society Journal 48, n.º 1 (1 de janeiro de 2014): 92–98. http://dx.doi.org/10.4031/mtsj.48.1.7.
Texto completo da fonteŁubiński, Jacek, e Henryk Olszewski. "Hybrid Finite Element Method Development for Offshore Structures’ Calculation with the Implementation of Industry Standards". Polish Maritime Research 26, n.º 4 (1 de dezembro de 2019): 90–100. http://dx.doi.org/10.2478/pomr-2019-0070.
Texto completo da fonteMitchell, Neil C. "Aspects of marine geoscience: a review and thoughts on potential for observing active processes and progress through collaboration between the ocean sciences". Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 370, n.º 1980 (13 de dezembro de 2012): 5567–612. http://dx.doi.org/10.1098/rsta.2012.0395.
Texto completo da fontePerrault, Douglas Edward. "Probability of Sea Condition for Ship Strength, Stability, and Motion Studies". Journal of Ship Research 65, n.º 01 (17 de março de 2021): 1–14. http://dx.doi.org/10.5957/josr.05190024.
Texto completo da fonte