Literatura científica selecionada sobre o tema "Ocean circulation Mathematical models"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Ocean circulation Mathematical models".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Ocean circulation Mathematical models"
Koutitas, Christopher, e Maria Gousidou-Koutita. "A comparative study of three mathematical models for wind-generated circulation in coastal areas". Coastal Engineering 10, n.º 2 (julho de 1986): 127–38. http://dx.doi.org/10.1016/0378-3839(86)90013-x.
Texto completo da fonteLucas, Carine, Madalina Petcu e Antoine Rousseau. "Quasi-hydrostatic primitive equations for ocean global circulation models". Chinese Annals of Mathematics, Series B 31, n.º 6 (22 de outubro de 2010): 939–52. http://dx.doi.org/10.1007/s11401-010-0611-6.
Texto completo da fonteQiao, Fangli, Yeli Yuan, Jia Deng, Dejun Dai e Zhenya Song. "Wave–turbulence interaction-induced vertical mixing and its effects in ocean and climate models". Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 374, n.º 2065 (13 de abril de 2016): 20150201. http://dx.doi.org/10.1098/rsta.2015.0201.
Texto completo da fonteBelyaev, K. P., A. A. Kuleshov, I. N. Smirnov e C. A. S. Tanajura. "Comparison of Data Assimilation Methods in Hydrodynamics Ocean Circulation Models". Mathematical Models and Computer Simulations 11, n.º 4 (julho de 2019): 564–74. http://dx.doi.org/10.1134/s2070048219040045.
Texto completo da fonteZanna, Laure, e Eli Tziperman. "Optimal Surface Excitation of the Thermohaline Circulation". Journal of Physical Oceanography 38, n.º 8 (1 de agosto de 2008): 1820–30. http://dx.doi.org/10.1175/2008jpo3752.1.
Texto completo da fonteJanecki, Maciej, Dawid Dybowski, Jaromir Jakacki, Artur Nowicki e Lidia Dzierzbicka-Glowacka. "The Use of Satellite Data to Determine the Changes of Hydrodynamic Parameters in the Gulf of Gdańsk via EcoFish Model". Remote Sensing 13, n.º 18 (8 de setembro de 2021): 3572. http://dx.doi.org/10.3390/rs13183572.
Texto completo da fonteSaenz, Juan A., Qingshan Chen e Todd Ringler. "Prognostic Residual Mean Flow in an Ocean General Circulation Model and its Relation to Prognostic Eulerian Mean Flow". Journal of Physical Oceanography 45, n.º 9 (setembro de 2015): 2247–60. http://dx.doi.org/10.1175/jpo-d-15-0024.1.
Texto completo da fonteThompson, Andrew F. "The atmospheric ocean: eddies and jets in the Antarctic Circumpolar Current". Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 366, n.º 1885 (25 de setembro de 2008): 4529–41. http://dx.doi.org/10.1098/rsta.2008.0196.
Texto completo da fonteBelyaev, Konstantin P., e Clemente A. S. Tanajura. "On the correction of perturbations due to data assimilation in ocean circulation models". Applied Mathematical Modelling 29, n.º 7 (julho de 2005): 690–709. http://dx.doi.org/10.1016/j.apm.2004.10.001.
Texto completo da fonteHogg, Andrew McC, e David R. Munday. "Does the sensitivity of Southern Ocean circulation depend upon bathymetric details?" Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 372, n.º 2019 (13 de julho de 2014): 20130050. http://dx.doi.org/10.1098/rsta.2013.0050.
Texto completo da fonteTeses / dissertações sobre o assunto "Ocean circulation Mathematical models"
Bermejo-Bermejo, Rodolfo. "A finite element model of ocean circulation". Thesis, University of British Columbia, 1986. http://hdl.handle.net/2429/26166.
Texto completo da fonteScience, Faculty of
Earth, Ocean and Atmospheric Sciences, Department of
Graduate
Kiss, Andrew Elek. "Dynamics of laboratory models of the wind-driven ocean circulation". View thesis entry in Australian Digital Theses Program, 2000. http://thesis.anu.edu.au/public/adt-ANU20011018.115707/index.html.
Texto completo da fonteVillanoy, Cesar Laurel. "Modification of the throughflow water properties in the Indonesian seas". Thesis, The University of Sydney, 1993. https://hdl.handle.net/2123/26591.
Texto completo da fonteJung, Kyung Tae. "On three-dimensional hydrodynamic numerical modelling of wind induced flows in stably stratified waters : a Galerkin-finite difference approach". Title page, contents and summary only, 1989. http://web4.library.adelaide.edu.au/theses/09PH/09phj95.pdf.
Texto completo da fonteWeaver, Anthony T. "On assimilating sea surface temperature data into an ocean general circulation model". Thesis, University of British Columbia, 1990. http://hdl.handle.net/2429/29204.
Texto completo da fonteScience, Faculty of
Earth, Ocean and Atmospheric Sciences, Department of
Graduate
BRIKOWSKI, TOM HARRY. "A QUANTITATIVE ANALYSIS OF HYDROTHERMAL CIRCULATION AROUND MID-OCEAN RIDGE MAGMA CHAMBERS". Diss., The University of Arizona, 1987. http://hdl.handle.net/10150/184128.
Texto completo da fonteCirano, Mauro School of Mathematics UNSW. "Wintertime Circulation within the Southeast Indian Ocean: a Numerical Study". Awarded by:University of New South Wales. School of Mathematics, 2000. http://handle.unsw.edu.au/1959.4/17820.
Texto completo da fonteDuhaut, Thomas H. A. "Wind-driven circulation : impact of a surface velocity dependent wind stress". Thesis, McGill University, 2006. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=101117.
Texto completo da fonteThe ocean current signature is clearly visible in the scatterometer-derived wind stress fields. We argue that because the actual ocean velocity differs from the modeled ocean velocities, care must be taken in directly applying scatterometer-derived wind stress products to the ocean circulation models. This is not to say that the scatterometer-derived wind stress is not useful. Clearly the great spatial and temporal coverage make these data sets invaluable. Our point is that it is better to separate the atmospheric and oceanic contribution to the stresses.
Finally, the new wind stress decreases the sensitivity of the solution to the (poorly known) bottom friction coefficient. The dependence of the circulation strength on different values of bottom friction is examined under the standard and the new wind stress forcing for two topographic configurations. A flat bottom and a meridional ridge case are studied. In the flat bottom case, the new wind stress leads to a significant reduction of the sensitivity to the bottom friction parameter, implying that inertial runaway occurs for smaller values of bottom friction coefficient. The ridge case also gives similar results. In the case of the ridge and the new wind stress formulation, no real inertial runaway regime has been found over the range of parameters explored.
Dail, Holly Janine. "Atlantic Ocean circulation at the last glacial maximum : inferences from data and models". Thesis, Massachusetts Institute of Technology, 2012. http://hdl.handle.net/1721.1/78367.
Texto completo da fonteThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (p. 221-236).
This thesis focuses on ocean circulation and atmospheric forcing in the Atlantic Ocean at the Last Glacial Maximum (LGM, 18-21 thousand years before present). Relative to the pre-industrial climate, LGM atmospheric CO₂ concentrations were about 90 ppm lower, ice sheets were much more extensive, and many regions experienced significantly colder temperatures. In this thesis a novel approach to dynamical reconstruction is applied to make estimates of LGM Atlantic Ocean state that are consistent with these proxy records and with known ocean dynamics. Ocean dynamics are described with the MIT General Circulation Model in an Atlantic configuration extending from 35°S to 75°N at 1° resolution. Six LGM proxy types are used to constrain the model: four compilations of near sea surface temperatures from the MARGO project, as well as benthic isotope records of [delta]¹⁸O and [delta]¹³C compiled by Marchal and Curry; 629 individual proxy records are used. To improve the fit of the model to the data, a least-squares fit is computed using an algorithm based on the model adjoint (the Lagrange multiplier methodology). The adjoint is used to compute improvements to uncertain initial and boundary conditions (the control variables). As compared to previous model-data syntheses of LGM ocean state, this thesis uses a significantly more realistic model of oceanic physics, and is the first to incorporate such a large number and diversity of proxy records. A major finding is that it is possible to find an ocean state that is consistent with all six LGM proxy compilations and with known ocean dynamics, given reasonable uncertainty estimates. Only relatively modest shifts from modern atmospheric forcing are required to fit the LGM data. The estimates presented herein succesfully reproduce regional shifts in conditions at the LGM that have been inferred from proxy records, but which have not been captured in the best available LGM coupled model simulations. In addition, LGM benthic [delta]¹⁸O and [delta]¹³C records are shown to be consistent with a shallow but robust Atlantic meridional overturning cell, although other circulations cannot be excluded.
by Holly Janine Dail.
Ph.D.
Mazloff, Matthew R. "Production and analysis of a Southern Ocean state estimate". Thesis, Online version, 2006. http://hdl.handle.net/1912/1282.
Texto completo da fonte"September 2006." Bibliography: p. 97-106.
Livros sobre o assunto "Ocean circulation Mathematical models"
A, Beckmann, ed. Numerical ocean circulation modeling. London: Imperial College Press, 1999.
Encontre o texto completo da fonteMarchuk, G. I. Mathematical modelling of the ocean circulation. Berlin: Springer-Verlag, 1988.
Encontre o texto completo da fonteModeli okeanskikh prot︠s︡essov. Moskva: "Nauka", 1989.
Encontre o texto completo da fonteChechelnitsky, Michael Y. Adaptive error estimation in linearized ocean general circulation models. Cambridge, Mass: Massachusetts Institute of Technology, 1999.
Encontre o texto completo da fonteOberhuber, Josef M. Simulation of the Atlantic circulation with a coupled sea ice-mixed layer-isopycnal general circulation model. Hamburg, Germany: Max-Planck-Institut fuer Meteorologie, 1990.
Encontre o texto completo da fonteStanev, Emil V. Numerical study on the Black Sea circulation. Hamburg: Eigenverlag des Instituts für Meereskunde der Universität Hamburg, 1988.
Encontre o texto completo da fonteWunsch, Carl. The ocean circulation inverse problem. Cambridge: Cambridge University Press, 1996.
Encontre o texto completo da fonteFundamentals of ocean climate models. Princeton, N.J: Princeton University Press, 2004.
Encontre o texto completo da fonteTsujino, Hiroyuki. Modelling study on thermohaline circulation in the Pacific Ocean. [Tokyo]: Center for Climate System Research, University of Tokyo, 1999.
Encontre o texto completo da fonteWang, Xiao Hua. Open boundary conditions in a three dimentional coastal ocean model. Canberra, ACT, Australia: School of Geography and Oceanography, University College, The University of New South Wales, Australian Defence Force Academy, 1996.
Encontre o texto completo da fonteCapítulos de livros sobre o assunto "Ocean circulation Mathematical models"
Marchuk, G. I., e A. S. Sarkisyan. "Formulation of the Problem, Transformation of Equations and Elaboration of Ocean Circulation Models". In Mathematical Modelling of Ocean Circulation, 1–52. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-642-61376-0_1.
Texto completo da fonteSaint-Raymond, Laure. "The Role of Boundary Layers in the Large-scale Ocean Circulation". In Mathematical Models and Methods for Planet Earth, 11–24. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-02657-2_2.
Texto completo da fonteOlbers, Dirk, Carsten Eden, Erich Becker, Friederike Pollmann e Johann Jungclaus. "The IDEMIX Model: Parameterization of Internal Gravity Waves for Circulation Models of Ocean and Atmosphere". In Mathematics of Planet Earth, 87–125. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-05704-6_3.
Texto completo da fonteHodnett, P. F., e Raymond McNamara. "Baroclinic Structure of a Modified Stommel-Arons Model of the Abyssal Ocean Circulation". In IUTAM Symposium on Advances in Mathematical Modelling of Atmosphere and Ocean Dynamics, 161–66. Dordrecht: Springer Netherlands, 2001. http://dx.doi.org/10.1007/978-94-010-0792-4_19.
Texto completo da fonteOlbers, Dirk, Jürgen Willebrand e Carsten Eden. "Models of the Ocean Circulation". In Ocean Dynamics, 663–86. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-23450-7_18.
Texto completo da fontePedlosky, Joseph. "Homogeneous Models of the Ocean Circulation". In Ocean Circulation Theory, 25–92. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/978-3-662-03204-6_2.
Texto completo da fontePedlosky, Joseph. "Vertical Structure: Baroclinic Quasi-Geostrophic Models". In Ocean Circulation Theory, 93–170. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/978-3-662-03204-6_3.
Texto completo da fonteMcWilliams, James C. "Oceanic General Circulation Models". In Ocean Modeling and Parameterization, 1–44. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-011-5096-5_1.
Texto completo da fonteGangopadhyay, Avijit. "Multiscale Ocean Models". In Introduction to Ocean Circulation and Modeling, 223–50. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9780429347221-10.
Texto completo da fonteOlbers, Dirk J. "Diagnostic Models of Ocean Circulation". In Large-Scale Transport Processes in Oceans and Atmosphere, 201–23. Dordrecht: Springer Netherlands, 1986. http://dx.doi.org/10.1007/978-94-009-4768-9_5.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Ocean circulation Mathematical models"
Farina, R., S. Cuomo e P. De Michele. "An inverse preconditioner for a free surface ocean circulation model". In 9TH INTERNATIONAL CONFERENCE ON MATHEMATICAL PROBLEMS IN ENGINEERING, AEROSPACE AND SCIENCES: ICNPAA 2012. AIP, 2012. http://dx.doi.org/10.1063/1.4765513.
Texto completo da fonteBarzegar, Sadegh, Alireza Elhami Amiri, Pooyan Rahbar e Mehdi Assadi Niazi. "Sea Water Pump Station Basin Mathematical Hydraulic Model Test (CFD Analysis)". In ASME 2009 28th International Conference on Ocean, Offshore and Arctic Engineering. ASMEDC, 2009. http://dx.doi.org/10.1115/omae2009-79245.
Texto completo da fonteSaasen, Arild, Jan David Ytrehus e Bjørnar Lund. "Annular Frictional Pressure Losses for Drilling Fluids". In ASME 2020 39th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/omae2020-18709.
Texto completo da fonteVankevich, Roman, Roman Vankevich, Ekaterina Sofina, Ekaterina Sofina, Tatjana Eremina, Tatjana Eremina, Mikhail Molchanov et al. "DEVELOPMENT OF A NEMO BASED OPERATIONAL SYSTEM FOR THE GULF OF FINLAND AND THE KALININGRAD SHELF". In Managing risks to coastal regions and communities in a changing world. Academus Publishing, 2017. http://dx.doi.org/10.31519/conferencearticle_5b1b93cbe18747.49034561.
Texto completo da fonteVankevich, Roman, Roman Vankevich, Mikhail Molchanov, Mikhail Molchanov, Ekaterina Sofina, Ekaterina Sofina, Vladimir Ryabchenko et al. "DEVELOPMENT OF A NEMO BASED OPERATIONAL SYSTEM FOR THE GULF OF FINLAND AND THE KALININGRAD SHELF". In Managing risks to coastal regions and communities in a changing world. Academus Publishing, 2017. http://dx.doi.org/10.31519/conferencearticle_5b1b93f0b46083.45377437.
Texto completo da fonteVankevich, Roman, Roman Vankevich, Mikhail Molchanov, Mikhail Molchanov, Ekaterina Sofina, Ekaterina Sofina, Vladimir Ryabchenko et al. "DEVELOPMENT OF A NEMO BASED OPERATIONAL SYSTEM FOR THE GULF OF FINLAND AND THE KALININGRAD SHELF". In Managing risks to coastal regions and communities in a changing world. Academus Publishing, 2017. http://dx.doi.org/10.21610/conferencearticle_58cb90a34d5c8.
Texto completo da fonteMonier, L., F. Brossier, F. Razafimahery e Michail D. Todorov. "Validation of a Three-Dimensional Model of the Ocean Circulation". In APPLICATIONS OF MATHEMATICS IN ENGINEERING AND ECONOMICS: Proceedings of the 34th Conference on Applications of Mathematics in Engineering and Economics (AMEE '08). AIP, 2008. http://dx.doi.org/10.1063/1.3030795.
Texto completo da fonteFarina, R., S. Cuomo, P. De Michele, Theodore E. Simos, George Psihoyios, Ch Tsitouras e Zacharias Anastassi. "A CUBLAS-CUDA Implementation of PCG Method of an Ocean Circulation Model". In NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2011: International Conference on Numerical Analysis and Applied Mathematics. AIP, 2011. http://dx.doi.org/10.1063/1.3636988.
Texto completo da fonteGriffies, S. M., S. M. Griffies, S. M. Griffies, S. M. Griffies, S. M. Griffies, S. M. Griffies, S. M. Griffies et al. "Problems and Prospects in Large-Scale Ocean Circulation Models". In OceanObs'09: Sustained Ocean Observations and Information for Society. European Space Agency, 2010. http://dx.doi.org/10.5270/oceanobs09.cwp.38.
Texto completo da fonteTANAKA, Y., M. TSUGAWA, Y. MIMURA e T. SUZUKI. "DEVELOPMENT OF PARALLEL OCEAN GENERAL CIRCULATION MODELS ON THE EARTH SIMULATOR". In Proceedings of the Tenth ECMWF Workshop on the Use of High Performance Computers in Meteorology. WORLD SCIENTIFIC, 2003. http://dx.doi.org/10.1142/9789812704832_0005.
Texto completo da fonteRelatórios de organizações sobre o assunto "Ocean circulation Mathematical models"
Whitehead, John A. Laboratory Models of Ocean Circulation. Fort Belvoir, VA: Defense Technical Information Center, junho de 1997. http://dx.doi.org/10.21236/ada326697.
Texto completo da fonteIskandarani, Mohamed, Omar Knio, Ashwanth Srinivasan e William C. Thacker. Quantifying Prediction Fidelity in Ocean Circulation Models. Fort Belvoir, VA: Defense Technical Information Center, setembro de 2012. http://dx.doi.org/10.21236/ada590693.
Texto completo da fonteIskandarani, Mohamed, Omar Knio, Ashwanth Srinivasan e William C. Thacker. Quantifying Prediction Fidelity in Ocean Circulation Models. Fort Belvoir, VA: Defense Technical Information Center, setembro de 2013. http://dx.doi.org/10.21236/ada601423.
Texto completo da fontePoling, D. A. Benchmarking ocean circulation models on massively parallel computers. Office of Scientific and Technical Information (OSTI), agosto de 1997. http://dx.doi.org/10.2172/515635.
Texto completo da fonteHallberg, Robert, Rainer Bleck, Eric Chassignet, Roland deSzoeke, Stephen Griffies, Paul Schoft, Scott Springer e Alan Walicraft. A Vision for Ocean Circulation Models: Generalized Vertical Coordinates. Fort Belvoir, VA: Defense Technical Information Center, março de 2004. http://dx.doi.org/10.21236/ada593098.
Texto completo da fonteSmith, Raymond C. Modeling Coastal Ocean Optical Properties for Coupled Circulation and Ecosystem Models. Fort Belvoir, VA: Defense Technical Information Center, setembro de 1999. http://dx.doi.org/10.21236/ada629643.
Texto completo da fonteMobley, Curtis D. Modeling Coastal Ocean Optical Properties for Coupled Circulation and Ecosystem Models. Fort Belvoir, VA: Defense Technical Information Center, setembro de 1999. http://dx.doi.org/10.21236/ada630449.
Texto completo da fonteMobley, Curtis D. Modeling Coastal Ocean Optical Properties for Coupled Circulation and Ecosystem Models. Fort Belvoir, VA: Defense Technical Information Center, setembro de 2006. http://dx.doi.org/10.21236/ada630666.
Texto completo da fonteMobley, Curtis D. Modeling Coastal Ocean Optical Properties for Coupled Circulation and Ecosystem Models. Fort Belvoir, VA: Defense Technical Information Center, setembro de 2003. http://dx.doi.org/10.21236/ada619153.
Texto completo da fonteMobley, Curtis D. Modeling Coastal Ocean Optical Properties for Coupled Circulation and Ecosystem Models. Fort Belvoir, VA: Defense Technical Information Center, setembro de 2001. http://dx.doi.org/10.21236/ada622170.
Texto completo da fonte