Literatura científica selecionada sobre o tema "Numerical optimization and civil aircraft engine noise"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Numerical optimization and civil aircraft engine noise".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Numerical optimization and civil aircraft engine noise"
Chen, Min, Zihao Jia, Hailong Tang, Yi Xiao, Yonghang Yang e Feijia Yin. "Research on Simulation and Performance Optimization of Mach 4 Civil Aircraft Propulsion Concept". International Journal of Aerospace Engineering 2019 (14 de janeiro de 2019): 1–19. http://dx.doi.org/10.1155/2019/2918646.
Texto completo da fonteMoreau, Antoine, Andrej Prescher, Stephen Schade, Maikhanh Dang, Robert Jaron e Sébastien Guérin. "A framework to simulate and to auralize the sound emitted by aircraft engines". INTER-NOISE and NOISE-CON Congress and Conference Proceedings 268, n.º 1 (30 de novembro de 2023): 7160–71. http://dx.doi.org/10.3397/in_2023_1073.
Texto completo da fonteHe, Sibo, Yimeng Li, Zidong Pu e Wenbo Rao. "Aerodynamic Calculation and Computer Numerical Simulation Methods Applied in Jet Engine Research". Highlights in Science, Engineering and Technology 62 (27 de julho de 2023): 217–27. http://dx.doi.org/10.54097/hset.v62i.10446.
Texto completo da fonteIspir, Ali Can, Pedro Miguel Gonçalves e Bayindir H. Saracoglu. "Analysis of a combined cycle propulsion system for STRATOFLY hypersonic vehicle over an extended trajectory". MATEC Web of Conferences 304 (2019): 03001. http://dx.doi.org/10.1051/matecconf/201930403001.
Texto completo da fonteLi, Yejin, Peng Rao, Zhengda Li e Jianliang Ai. "On-Board Parameter Optimization for Space-Based Infrared Air Vehicle Detection Based on ADS-B Data". Applied Sciences 13, n.º 12 (8 de junho de 2023): 6931. http://dx.doi.org/10.3390/app13126931.
Texto completo da fonteGhinet, Sebastian, Patrick Bouche, Thomas Padois, Olivier Doutres, Tenon Charly Kone, Raymond Panneton e Noureddine Atalla. "Overview of concept designs and results of the New Acoustic Insulation Meta-Material for Aerospace (NAIMMTA) project". INTER-NOISE and NOISE-CON Congress and Conference Proceedings 268, n.º 5 (30 de novembro de 2023): 3402–13. http://dx.doi.org/10.3397/in_2023_0489.
Texto completo da fonteLAFONT, Victor, Delphine SEBBANE, Frank SIMON, Jean-Paul PINACHO e Julien CAILLET. "Feasibility of an acoustic liner applied to a Fenestron: experimentation". INTER-NOISE and NOISE-CON Congress and Conference Proceedings 270, n.º 9 (4 de outubro de 2024): 2265–76. http://dx.doi.org/10.3397/in_2024_3160.
Texto completo da fonteSchloesser, Philipp, Michael Meyer, Martin Schueller, Perez Weigel e Matthias Bauer. "Fluidic actuators for separation control at the engine/wing junction". Aircraft Engineering and Aerospace Technology 89, n.º 5 (4 de setembro de 2017): 709–18. http://dx.doi.org/10.1108/aeat-01-2017-0013.
Texto completo da fonteWang, Ruichen, e Xun Huang. "Sound radiation from semi-infinite elliptical ducts with uniform subsonic jets: An analytical approach". Journal of the Acoustical Society of America 154, n.º 4_supplement (1 de outubro de 2023): A188—A189. http://dx.doi.org/10.1121/10.0023221.
Texto completo da fonteShah, P. N., D. D. Mobed e Z. S. Spakovszky. "A Novel Turbomachinery Air-Brake Concept for Quiet Aircraft". Journal of Turbomachinery 132, n.º 4 (26 de abril de 2010). http://dx.doi.org/10.1115/1.3192145.
Texto completo da fonteTeses / dissertações sobre o assunto "Numerical optimization and civil aircraft engine noise"
Ezzine, Mouhamed Mounibe. "Etude de dispositifs passifs et actifs de réduction du bruit d’interaction soufflante–redresseur". Electronic Thesis or Diss., Ecully, Ecole centrale de Lyon, 2024. http://www.theses.fr/2024ECDL0022.
Texto completo da fonteTwo approaches to reduce aeroacoustic noise associated with the OGV of aircraft engines have been examined in this thesis. The first relies on passive solutions, using materials such as porous foam and wire mesh to attenuate noise. The effectiveness of these materials has been tested in various configurations, demonstrating a noise reduction capacity of up to 6 dB under certain conditions, although this efficiency may be affected by factors such as flow velocity. The second part of the study focused on active techniques, particularly the use of piezoelectric cells for noise control. These technologies have shown a notable reduction in noise, reaching up to 15 dB in some cases, although noise amplification has been noted in other situations, emphasizing the importance of precise design in the application of these technologies. Finally, numerical optimization of acoustic impedance on aerodynamic profiles was explored, aiming to further reduce noise generated by turbulent flows. This approach identified optimal impedance values, leading to significant noise reductions for certain frequencies. The results suggest that precise selection of acoustic impedance on profile surfaces can be an effective method for minimizing aeroacoustic noise, although profile geometry may influence the results. Overall, these studies highlight the potential of different strategies for aeroacoustic noise reduction, while emphasizing the need for careful application tailored to specific conditions to maximize their effectiveness
Trabalhos de conferências sobre o assunto "Numerical optimization and civil aircraft engine noise"
Igor, Egorov N., Kretinin V. Gennady, Leshchenko A. Igor e Kuptzov V. Sergey. "Multi-Objective Robust Optimization of Air Engine Using IOSO Technology". In ASME Turbo Expo 2004: Power for Land, Sea, and Air. ASMEDC, 2004. http://dx.doi.org/10.1115/gt2004-53504.
Texto completo da fonteCarnevale, Mauro, Feng Wang e Luca di Mare. "Low Frequency Distortion in Civil Aero-Engine Intake". In ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/gt2016-56203.
Texto completo da fonteShah, P. N., D. D. Mobed e Z. S. Spakovszky. "A Novel Turbomachinery Air-Brake Concept for Quiet Aircraft". In ASME Turbo Expo 2007: Power for Land, Sea, and Air. ASMEDC, 2007. http://dx.doi.org/10.1115/gt2007-27635.
Texto completo da fonteBartelt, Michael, Juan D. Laguna e Joerg R. Seume. "Synthetic Sound Source Generation for Acoustical Measurements in Turbomachines". In ASME Turbo Expo 2013: Turbine Technical Conference and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/gt2013-95045.
Texto completo da fonteFiorio, M. "Hardware-in-the-loop validation of a sense and avoid system leveraging data fusion between radar and optical sensors for a mini UAV". In Aeronautics and Astronautics. Materials Research Forum LLC, 2023. http://dx.doi.org/10.21741/9781644902813-16.
Texto completo da fonte