Siga este link para ver outros tipos de publicações sobre o tema: Numbers.

Artigos de revistas sobre o tema "Numbers"

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Numbers".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.

1

Montémont, Véronique. "Roubaud’s number on numbers". Journal of Romance Studies 7, n.º 3 (dezembro de 2007): 111–21. http://dx.doi.org/10.3828/jrs.7.3.111.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Carbó-Dorca, Ramon. "Mersenne Numbers, Recursive Generation of Natural Numbers, and Counting the Number of Prime Numbers". Applied Mathematics 13, n.º 06 (2022): 538–43. http://dx.doi.org/10.4236/am.2022.136034.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Sudhakaraiah, A., A. Madhankumar, Pagidi Obulesu e A. Lakshmi Sowjanya. "73 Is the Only Largest Prime Power Number and Composite Power Numbers". International Journal of Science and Research (IJSR) 12, n.º 11 (5 de novembro de 2023): 1318–23. http://dx.doi.org/10.21275/sr231118184617.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Steele, G. Ander. "Carmichael numbers in number rings". Journal of Number Theory 128, n.º 4 (abril de 2008): 910–17. http://dx.doi.org/10.1016/j.jnt.2007.08.009.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Hofweber, T. "Number Determiners, Numbers, and Arithmetic". Philosophical Review 114, n.º 2 (1 de abril de 2005): 179–225. http://dx.doi.org/10.1215/00318108-114-2-179.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

., Jyoti. "Rational Numbers". Journal of Advances and Scholarly Researches in Allied Education 15, n.º 5 (1 de julho de 2018): 220–22. http://dx.doi.org/10.29070/15/57856.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Boast, Carl A., e Paul R. Sanberg. "Locomotor behavior: numbers, numbers, numbers!" Pharmacology Biochemistry and Behavior 27, n.º 3 (julho de 1987): 543. http://dx.doi.org/10.1016/0091-3057(87)90364-9.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

KÖKEN, Fikri, e Emre KANKAL. "Altered Numbers of Fibonacci Number Squared". Journal of New Theory, n.º 45 (31 de dezembro de 2023): 73–82. http://dx.doi.org/10.53570/jnt.1368751.

Texto completo da fonte
Resumo:
We investigate two types of altered Fibonacci numbers obtained by adding or subtracting a specific value $\{a\}$ from the square of the $n^{th}$ Fibonacci numbers $G^{(2)}_{F(n)}(a)$ and $H^{(2)}_{F(n)}(a)$. These numbers are significant as they are related to the consecutive products of the Fibonacci numbers. As a result, we establish consecutive sum-subtraction relations of altered Fibonacci numbers and their Binet-like formulas. Moreover, we explore greatest common divisor (GCD) sequences of r-successive terms of altered Fibonacci numbers represented by $\left\{G^{(2)}_{F(n), r}(a)\right\}$ and $\left\{H^{(2)}_{F(n), r}(a)\right\}$ such that $r\in\{1,2,3\}$ and $a\in\{1,4\}$. The sequences are based on the GCD properties of consecutive terms of the Fibonacci numbers and structured as periodic or Fibonacci sequences.
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Jędrzejak, Tomasz. "Congruent numbers over real number fields". Colloquium Mathematicum 128, n.º 2 (2012): 179–86. http://dx.doi.org/10.4064/cm128-2-3.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Fu, Ruiqin, Hai Yang e Jing Wu. "The Perfect Numbers of Pell Number". Journal of Physics: Conference Series 1237 (junho de 2019): 022041. http://dx.doi.org/10.1088/1742-6596/1237/2/022041.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
11

Day, Sophie, Celia Lury e Nina Wakeford. "Number ecologies: numbers and numbering practices". Distinktion: Journal of Social Theory 15, n.º 2 (4 de maio de 2014): 123–54. http://dx.doi.org/10.1080/1600910x.2014.923011.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
12

AKTAŞ, KEVSER, e M. RAM MURTY. "On the number of special numbers". Proceedings - Mathematical Sciences 127, n.º 3 (31 de janeiro de 2017): 423–30. http://dx.doi.org/10.1007/s12044-016-0326-z.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
13

Felka, Katharina. "Number words and reference to numbers". Philosophical Studies 168, n.º 1 (3 de abril de 2013): 261–82. http://dx.doi.org/10.1007/s11098-013-0129-3.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
14

De Koninck, Jean-Marie, e Florian Luca. "Counting the number of economical numbers". Publicationes Mathematicae Debrecen 68, n.º 1-2 (1 de janeiro de 2006): 97–113. http://dx.doi.org/10.5486/pmd.2006.3171.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
15

Fellows, Michael R., Serge Gaspers e Frances A. Rosamond. "Parameterizing by the Number of Numbers". Theory of Computing Systems 50, n.º 4 (29 de outubro de 2011): 675–93. http://dx.doi.org/10.1007/s00224-011-9367-y.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
16

Goddard, Cliff. "The conceptual semantics of numbers and counting". Functions of Language 16, n.º 2 (22 de outubro de 2009): 193–224. http://dx.doi.org/10.1075/fol.16.2.02god.

Texto completo da fonte
Resumo:
This study explores the conceptual semantics of numbers and counting, using the natural semantic metalanguage (NSM) technique of semantic analysis (Wierzbicka 1996; Goddard & Wierzbicka (eds.) 2002). It first argues that the concept of a number in one of its senses (number1, roughly, “number word”) and the meanings of low number words, such as one, two, and three, can be explicated directly in terms of semantic primes, without reference to any counting procedures or practices. It then argues, however, that the larger numbers, and the productivity of the number sequence, depend on the concept and practice of counting, in the intransitive sense of the verb. Both the intransitive and transitive senses of counting are explicated, and the semantic relationship between them is clarified. Finally, the study moves to the semantics of abstract numbers (number2), roughly, numbers as represented by numerals, e.g. 5, 15, 27, 36, as opposed to number words. Though some reference is made to cross-linguistic data and cultural variation, the treatment is focused primarily on English.
Estilos ABNT, Harvard, Vancouver, APA, etc.
17

Froman, Robin D. "Numbers, numbers everywhere?" Research in Nursing & Health 27, n.º 3 (2004): 145–47. http://dx.doi.org/10.1002/nur.20020.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
18

Thompson, K., J. G. Hodgson, J. P. Grime, I. H. Rorison, S. R. Band e R. E. Spencer. "Ellenberg numbers revisited". Phytocoenologia 23, n.º 1-4 (15 de dezembro de 1993): 277–89. http://dx.doi.org/10.1127/phyto/23/1993/277.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
19

Bhutani, Kiran R., e Alexander B. Levin. "Graceful numbers". International Journal of Mathematics and Mathematical Sciences 29, n.º 8 (2002): 495–99. http://dx.doi.org/10.1155/s0161171202007615.

Texto completo da fonte
Resumo:
We construct a labeled graphD(n)that reflects the structure of divisors of a given natural numbern. We define the concept of graceful numbers in terms of this associated graph and find the general form of such a number. As a consequence, we determine which graceful numbers are perfect.
Estilos ABNT, Harvard, Vancouver, APA, etc.
20

Adédji, Kouèssi Norbert, Japhet Odjoumani e Alain Togbé. "Padovan and Perrin numbers as products of two generalized Lucas numbers". Archivum Mathematicum, n.º 4 (2023): 315–37. http://dx.doi.org/10.5817/am2023-4-315.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
21

Ndiaye, Mady. "Origin of Sexy Prime Numbers, Origin of Cousin Prime Numbers, Equations from Supposedly Prime Numbers, Origin of the Mersenne Number, Origin of the Fermat Number". Advances in Pure Mathematics 14, n.º 05 (2024): 321–32. http://dx.doi.org/10.4236/apm.2024.145018.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
22

Kazda, Alexandr, e Petr Kùrka. "Representing real numbers in Möbius number systems". Actes des rencontres du CIRM 1, n.º 1 (2009): 35–39. http://dx.doi.org/10.5802/acirm.7.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
23

Smil, Vaclav. "Unemployment: Pick a number [Numbers Don't Lie]". IEEE Spectrum 54, n.º 5 (maio de 2017): 24. http://dx.doi.org/10.1109/mspec.2017.7906894.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
24

Frougny, Christiane, e Karel Klouda. "Rational base number systems forp-adic numbers". RAIRO - Theoretical Informatics and Applications 46, n.º 1 (22 de agosto de 2011): 87–106. http://dx.doi.org/10.1051/ita/2011114.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
25

Webb, William A. "The N-Number Game for Real Numbers". European Journal of Combinatorics 8, n.º 4 (outubro de 1987): 457–60. http://dx.doi.org/10.1016/s0195-6698(87)80053-7.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
26

Daileda, Ryan C., Raju Krishnamoorthy e Anton Malyshev. "Maximal class numbers of CM number fields". Journal of Number Theory 130, n.º 4 (abril de 2010): 936–43. http://dx.doi.org/10.1016/j.jnt.2009.09.013.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
27

Kovács, B. "Representation of complex numbers in number systems". Acta Mathematica Hungarica 58, n.º 1-2 (março de 1991): 113–20. http://dx.doi.org/10.1007/bf01903553.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
28

Jen-Shiun Chiang e Mi Lu. "Floating-point numbers in residue number systems". Computers & Mathematics with Applications 22, n.º 10 (1991): 127–40. http://dx.doi.org/10.1016/0898-1221(91)90200-n.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
29

Chang, Ku-Young, e Soun-Hi Kwon. "Class numbers of imaginary abelian number fields". Proceedings of the American Mathematical Society 128, n.º 9 (27 de abril de 2000): 2517–28. http://dx.doi.org/10.1090/s0002-9939-00-05555-6.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
30

Figotin, A., A. Gordon, J. Quinn, N. Stavrakas e S. Molchanov. "Occupancy Numbers in Testing Random Number Generators". SIAM Journal on Applied Mathematics 62, n.º 6 (janeiro de 2002): 1980–2011. http://dx.doi.org/10.1137/s0036139900366869.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
31

Bertin, Marie José, e Toufik Zaïmi. "Complex Pisot numbers in algebraic number fields". Comptes Rendus Mathematique 353, n.º 11 (novembro de 2015): 965–67. http://dx.doi.org/10.1016/j.crma.2015.09.007.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
32

De Koninck, J. M., N. Doyon e I. Kátai. "Counting the number of twin Niven numbers". Ramanujan Journal 17, n.º 1 (12 de julho de 2008): 89–105. http://dx.doi.org/10.1007/s11139-008-9127-z.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
33

Caglayan, Günhan. "Covering a Triangular Number with Pentagonal Numbers". Mathematical Intelligencer 42, n.º 1 (16 de dezembro de 2019): 55. http://dx.doi.org/10.1007/s00283-019-09953-0.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
34

Chang, Ku-Young, e Soun-Hi Kwon. "The imaginary abelian number fields with class numbers equal to their genus class numbers". Journal de Théorie des Nombres de Bordeaux 12, n.º 2 (2000): 349–65. http://dx.doi.org/10.5802/jtnb.283.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
35

DeGeorges, Kathie M. "Numbers, I Need Numbers!" AWHONN Lifelines 3, n.º 2 (abril de 1999): 49–50. http://dx.doi.org/10.1111/j.1552-6356.1999.tb01082.x.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
36

Lee, Mercia. "Numbers, numbers all around". Practical Pre-School 2007, n.º 75 (abril de 2007): 5–6. http://dx.doi.org/10.12968/prps.2007.1.75.38593.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
37

Locher, Helmut. "On the number of good approximations of algebraic numbers by algebraic numbers of bounded degree". Acta Arithmetica 89, n.º 2 (1999): 97–122. http://dx.doi.org/10.4064/aa-89-2-97-122.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
38

Azarija, Jernej, e Riste Škrekovski. "Euler's idoneal numbers and an inequality concerning minimal graphs with a prescribed number of spanning trees". Mathematica Bohemica 138, n.º 2 (2013): 121–31. http://dx.doi.org/10.21136/mb.2013.143285.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
39

Pokorna, Pavla, e Dick Tibboel. "Numbers, Numbers: Great, Great…But?!*". Pediatric Critical Care Medicine 21, n.º 9 (setembro de 2020): 844–45. http://dx.doi.org/10.1097/pcc.0000000000002371.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
40

Hernon, Peter. "Numbers and “Damn” GPO Numbers". Government Information Quarterly 16, n.º 1 (janeiro de 1999): 1–4. http://dx.doi.org/10.1016/s0740-624x(99)80012-4.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
41

Kulyabov, D. S., A. V. Korolkova e M. N. Gevorkyan. "Hyperbolic numbers as Einstein numbers". Journal of Physics: Conference Series 1557 (maio de 2020): 012027. http://dx.doi.org/10.1088/1742-6596/1557/1/012027.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
42

Çelik, Songül, İnan Durukan e Engin Özkan. "New recurrences on Pell numbers, Pell-Lucas numbers, Jacobsthal numbers, and Jacobsthal-Lucas numbers". Chaos, Solitons & Fractals 150 (setembro de 2021): 111173. http://dx.doi.org/10.1016/j.chaos.2021.111173.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
43

Trespalacios, Jesús, e Barbara Chamberline. "Pearl diver: Identifying numbers on a number line". Teaching Children Mathematics 18, n.º 7 (março de 2012): 446–47. http://dx.doi.org/10.5951/teacchilmath.18.7.0446.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
44

Geroldinger, A. "Factorization of natural numbers in algebraic number fields". Acta Arithmetica 57, n.º 4 (1991): 365–73. http://dx.doi.org/10.4064/aa-57-4-365-373.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
45

Liu, Hong-Quan. "The number of squarefull numbers in an interval". Acta Arithmetica 64, n.º 2 (1993): 129–49. http://dx.doi.org/10.4064/aa-64-2-129-149.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
46

Chen, Kwang-Wu. "Median Bernoulli Numbers and Ramanujan’s Harmonic Number Expansion". Mathematics 10, n.º 12 (12 de junho de 2022): 2033. http://dx.doi.org/10.3390/math10122033.

Texto completo da fonte
Resumo:
Ramanujan-type harmonic number expansion was given by many authors. Some of the most well-known are: Hn∼γ+logn−∑k=1∞Bkk·nk, where Bk is the Bernoulli numbers. In this paper, we rewrite Ramanujan’s harmonic number expansion into a similar form of Euler’s asymptotic expansion as n approaches infinity: Hn∼γ+c0(h)log(q+h)−∑k=1∞ck(h)k·(q+h)k, where q=n(n+1) is the nth pronic number, twice the nth triangular number, γ is the Euler–Mascheroni constant, and ck(x)=∑j=0kkjcjxk−j, with ck is the negative of the median Bernoulli numbers. Then, 2cn=∑k=0nnkBn+k, where Bn is the Bernoulli number. By using the result obtained, we present two general Ramanujan’s asymptotic expansions for the nth harmonic number. For example, Hn∼γ+12log(q+13)−1180(q+13)2∑j=0∞bj(r)(q+13)j1/r as n approaches infinity, where bj(r) can be determined.
Estilos ABNT, Harvard, Vancouver, APA, etc.
47

Backelin, Jörgen. "On the number of semigroups of natural numbers." MATHEMATICA SCANDINAVICA 66 (1 de junho de 1990): 197. http://dx.doi.org/10.7146/math.scand.a-12304.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
48

Korhonen, Risto. "Approximation of real numbers with rational number sequences". Proceedings of the American Mathematical Society 137, n.º 01 (14 de agosto de 2008): 107–13. http://dx.doi.org/10.1090/s0002-9939-08-09479-3.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
49

Louboutin, Stéphane. "Computation of class numbers of quadratic number fields". Mathematics of Computation 71, n.º 240 (21 de novembro de 2001): 1735–44. http://dx.doi.org/10.1090/s0025-5718-01-01367-9.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
50

Shah Ali, H. A. "92.02 The number of S.P numbers is finite". Mathematical Gazette 92, n.º 523 (março de 2008): 64–65. http://dx.doi.org/10.1017/s0025557200182543.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Oferecemos descontos em todos os planos premium para autores cujas obras estão incluídas em seleções literárias temáticas. Contate-nos para obter um código promocional único!

Vá para a bibliografia