Siga este link para ver outros tipos de publicações sobre o tema: Numbers, Rational.

Artigos de revistas sobre o tema "Numbers, Rational"

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Numbers, Rational".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.

1

., Jyoti. "Rational Numbers". Journal of Advances and Scholarly Researches in Allied Education 15, n.º 5 (1 de julho de 2018): 220–22. http://dx.doi.org/10.29070/15/57856.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Scott Malcom, P. "Understanding Rational Numbers". Mathematics Teacher 80, n.º 7 (outubro de 1987): 518–21. http://dx.doi.org/10.5951/mt.80.7.0518.

Texto completo da fonte
Resumo:
Understanding is sometimes an elusive goal in mathematics. Although we may believe we have a complete understanding of a concept, another approach to this same concept may bring us additional insight.
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Lennerstad, Håkan, e Lars Lundberg. "Decomposing rational numbers". Acta Arithmetica 145, n.º 3 (2010): 213–20. http://dx.doi.org/10.4064/aa145-3-1.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

PEYTON JONES, SIMON. "12 Rational Numbers". Journal of Functional Programming 13, n.º 1 (janeiro de 2003): 149–52. http://dx.doi.org/10.1017/s0956796803001412.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Frougny, Christiane, e Karel Klouda. "Rational base number systems forp-adic numbers". RAIRO - Theoretical Informatics and Applications 46, n.º 1 (22 de agosto de 2011): 87–106. http://dx.doi.org/10.1051/ita/2011114.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Xin Liu, Xin Liu, Xiaomeng Liu Xin Liu, Dan Luo Xiaomeng Liu, Gang Xu Dan Luo e Xiu-Bo Chen Gang Xu. "Confidentially Compare Rational Numbers under the Malicious Model". 網際網路技術學刊 25, n.º 3 (maio de 2024): 355–63. http://dx.doi.org/10.53106/160792642024052503002.

Texto completo da fonte
Resumo:
<p>Secure multi-party computation is a hotspot in the cryptography field, and it is also a significant means to realize privacy computation. The Millionaires&rsquo; problem is the most fundamental problem among them, which is the basic module of secure multi-party computation protocols. Although there are many solutions to this problem, there are few anti-malicious adversarial protocols besides protocols based on Yao&rsquo;s garbled circuit. Only a few solutions have low efficiency, and there is no protocol for rational numbers comparison under the malicious model, which restricts the solution of many secure multi-party computation problems. In this paper, the possible malicious behaviors are analyzed in the existing Millionaires&rsquo; problem protocols. These behaviors are discovered and taken precautions against through the triangle area formula, zero-knowledge proof, and cut-and-choose method, so the protocol of comparing confidentially rational numbers is proposed under the malicious model. And this paper adopts the real/ideal model paradigm to prove the security of the malicious model protocol. Efficiency analysis indicates that the proposed protocol is more effective than existing protocols. The protocol of rational numbers comparison under the malicious model is more suitable for the practical applications of secure multi-party computation, which has important theoretical and practical significance.</p> <p>&nbsp;</p>
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Roy, Damien, e Johannes Schleischitz. "Numbers with Almost all Convergents in a Cantor Set". Canadian Mathematical Bulletin 62, n.º 4 (3 de dezembro de 2018): 869–75. http://dx.doi.org/10.4153/s0008439518000450.

Texto completo da fonte
Resumo:
AbstractIn 1984, K. Mahler asked how well elements in the Cantor middle third set can be approximated by rational numbers from that set and by rational numbers outside of that set. We consider more general missing digit sets $C$ and construct numbers in $C$ that are arbitrarily well approximable by rationals in $C$, but badly approximable by rationals outside of $C$. More precisely, we construct them so that all but finitely many of their convergents lie in $C$.
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Belin, Mervenur, e Gülseren Karagöz Akar. "Exploring Real Numbers as Rational Number Sequences With Prospective Mathematics Teachers". Mathematics Teacher Educator 9, n.º 1 (1 de setembro de 2020): 63–87. http://dx.doi.org/10.5951/mte.2020.9999.

Texto completo da fonte
Resumo:
The understandings prospective mathematics teachers develop by focusing on quantities and quantitative relationships within real numbers have the potential for enhancing their future students’ understanding of real numbers. In this article, we propose an instructional sequence that addresses quantitative relationships for the construction of real numbers as rational number sequences. We found that the instructional sequence enhanced prospective teachers’ understanding of real numbers by considering them as quantities and explaining them by using rational number sequences. In particular, results showed that prospective teachers reasoned about fractions and decimal representations of rational numbers using long division, the division algorithm, and diagrams. This further prompted their reasoning with decimal representations of rational and irrational numbers as rational number sequences, which leads to authentic construction of real numbers. Enacting the instructional sequence provides lenses for mathematics teacher educators to notice and eliminate difficulties of their students while developing relationships among multiple representations of real numbers.
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Korhonen, Risto. "Approximation of real numbers with rational number sequences". Proceedings of the American Mathematical Society 137, n.º 01 (14 de agosto de 2008): 107–13. http://dx.doi.org/10.1090/s0002-9939-08-09479-3.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Gong, Linming, Bo Yang, Tao Xue, Jinguang Chen e Wei Wang. "Secure rational numbers equivalence test based on threshold cryptosystem with rational numbers". Information Sciences 466 (outubro de 2018): 44–54. http://dx.doi.org/10.1016/j.ins.2018.07.046.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
11

Marcos, J. E. "Topological completions of the field of rational numbers which consist of Liouville numbers and rational numbers". Journal of Pure and Applied Algebra 138, n.º 3 (maio de 1999): 251–77. http://dx.doi.org/10.1016/s0022-4049(98)00053-x.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
12

Trespalacios, Jesús, e Barbara Chamberline. "Pearl diver: Identifying numbers on a number line". Teaching Children Mathematics 18, n.º 7 (março de 2012): 446–47. http://dx.doi.org/10.5951/teacchilmath.18.7.0446.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
13

BERGER, ARNO. "On linear independence of trigonometric numbers". Carpathian Journal of Mathematics 34, n.º 2 (2018): 157–66. http://dx.doi.org/10.37193/cjm.2018.02.04.

Texto completo da fonte
Resumo:
A necessary and sufficient condition is established for 1, cos(πr1), and cos(πr2) to be rationally independent, where r1, r2 are rational numbers. The elementary computational argument yields linear independence over larger number fields as well.
Estilos ABNT, Harvard, Vancouver, APA, etc.
14

Elias, Henrique Rizek, Alessandro Jacques Ribeiro e Angela Marta Pereira das Dores Savioli. "Epistemological Matrix of Rational Number: a Look at the Different Meanings of Rational Numbers". International Journal of Science and Mathematics Education 18, n.º 2 (19 de março de 2019): 357–76. http://dx.doi.org/10.1007/s10763-019-09965-4.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
15

Sándor, József. "On certain rational perfect numbers". Notes on Number Theory and Discrete Mathematics 28, n.º 2 (12 de maio de 2022): 281–85. http://dx.doi.org/10.7546/nntdm.2022.28.2.281-285.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
16

Atanasiu, Dragu. "Laplace Integral on Rational Numbers." MATHEMATICA SCANDINAVICA 76 (1 de dezembro de 1995): 152. http://dx.doi.org/10.7146/math.scand.a-12531.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
17

Detorie, Rick. "Let's Be Rational about Numbers". Mathematics Teaching in the Middle School 20, n.º 7 (março de 2015): 394–97. http://dx.doi.org/10.5951/mathteacmiddscho.20.7.0394.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
18

Goetz, Melanie. "The irrationality of rational numbers". Journal - American Water Works Association 105, n.º 7 (julho de 2013): 82–84. http://dx.doi.org/10.5942/jawwa.2013.105.0096.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
19

Almada, Carlos. "On counting the rational numbers". International Journal of Mathematical Education in Science and Technology 41, n.º 8 (15 de dezembro de 2010): 1096–101. http://dx.doi.org/10.1080/0020739x.2010.500695.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
20

Smith III, John P. "Competent Reasoning With Rational Numbers". Cognition and Instruction 13, n.º 1 (março de 1995): 3–50. http://dx.doi.org/10.1207/s1532690xci1301_1.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
21

Bowker, Geoffrey C., e Susan Leigh Star. "Pure, Real and Rational Numbers". Social Studies of Science 31, n.º 3 (junho de 2001): 422–25. http://dx.doi.org/10.1177/030631201031003006.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
22

Rowland, Eric, e Jeffrey Shallit. "Automatic Sets of Rational Numbers". International Journal of Foundations of Computer Science 26, n.º 03 (abril de 2015): 343–65. http://dx.doi.org/10.1142/s0129054115500197.

Texto completo da fonte
Resumo:
The notion of a [Formula: see text]-automatic set of integers is well-studied. We develop a new notion — the [Formula: see text]-automatic set of rational numbers — and prove basic properties of these sets, including closure properties and decidability.
Estilos ABNT, Harvard, Vancouver, APA, etc.
23

Vourdas, A. "Harmonic analysis on rational numbers". Journal of Mathematical Analysis and Applications 394, n.º 1 (outubro de 2012): 48–60. http://dx.doi.org/10.1016/j.jmaa.2012.04.059.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
24

Tasoev, B. G. "Rational approximations to certain numbers". Mathematical Notes 67, n.º 6 (junho de 2000): 786–91. http://dx.doi.org/10.1007/bf02675633.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
25

Cufaro Petroni, Nicola. "Taking Rational Numbers at Random". AppliedMath 3, n.º 3 (1 de setembro de 2023): 648–63. http://dx.doi.org/10.3390/appliedmath3030034.

Texto completo da fonte
Resumo:
In this article, some prescriptions to define a distribution on the set Q0 of all rational numbers in [0,1] are outlined. We explored a few properties of these distributions and the possibility of making these rational numbers asymptotically equiprobable in a suitable sense. In particular, it will be shown that in the said limit—albeit no absolutely continuous uniform distribution can be properly defined in Q0—the probability allotted to every single q∈Q0 asymptotically vanishes, while that of the subset of Q0 falling in an interval [a,b]⊆Q0 goes to b−a. We finally present some hints to complete sequencing without repeating the numbers in Q0 as a prerequisite to laying down more distributions on it.
Estilos ABNT, Harvard, Vancouver, APA, etc.
26

Koo, Reginald. "95.03 Geometric enumeration of the rationals between any two rational numbers". Mathematical Gazette 95, n.º 532 (março de 2011): 63–66. http://dx.doi.org/10.1017/s0025557200002357.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
27

Guo, Shuzhen. "Analysis on serialized expressions of rational numbers". Theoretical and Natural Science 5, n.º 1 (25 de maio de 2023): 435–38. http://dx.doi.org/10.54254/2753-8818/5/20230275.

Texto completo da fonte
Resumo:
Rational numbers can be serialized, in other words, rational numbers can be expressed in a regular, ordered way. This paper discusses the background, reasons and methods of rational number serialization, and also identifies the rules of rational number serialization, derives a unique sequence of rational numbers, identifies the expressions for rational number serialization, and lays the foundation for the use of rational number sequences in mathematics. The purpose of serializing rational number in this paper is to make transmitting and storing data more easily, and gives a better way for researchers to do further Mathmetics studies.
Estilos ABNT, Harvard, Vancouver, APA, etc.
28

Hurst, Michelle, e Sara Cordes. "Rational-number comparison across notation: Fractions, decimals, and whole numbers." Journal of Experimental Psychology: Human Perception and Performance 42, n.º 2 (2016): 281–93. http://dx.doi.org/10.1037/xhp0000140.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
29

Mueller, Julia, e W. M. Schmidt. "On the number of good rational approximations to algebraic numbers". Proceedings of the American Mathematical Society 106, n.º 4 (1 de abril de 1989): 859. http://dx.doi.org/10.1090/s0002-9939-1989-0961415-1.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
30

Van Hoof, Jo, Lieven Verschaffel e Wim Van Dooren. "Number sense in the transition from natural to rational numbers". British Journal of Educational Psychology 87, n.º 1 (31 de outubro de 2016): 43–56. http://dx.doi.org/10.1111/bjep.12134.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
31

., Norris Sookoo, e Ashok Sahai . "Partial Densities on the Rational Numbers". Journal of Applied Sciences 7, n.º 6 (1 de março de 2007): 830–34. http://dx.doi.org/10.3923/jas.2007.830.834.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
32

Sándor, József. "On certain rational perfect numbers, II". Notes on Number Theory and Discrete Mathematics 28, n.º 3 (10 de agosto de 2022): 525–32. http://dx.doi.org/10.7546/nntdm.2022.28.3.525-532.

Texto completo da fonte
Resumo:
We continue the study from [1], by studying equations of type $\psi(n) = \dfrac{k+1}{k} \cdot \ n+a,$ $a\in \{0, 1, 2, 3\},$ and $\varphi(n) = \dfrac{k-1}{k} \cdot \ n-a,$ $a\in \{0, 1, 2, 3\}$ for $k > 1,$ where $\psi(n)$ and $\varphi(n)$ denote the Dedekind, respectively Euler's, arithmetical functions.
Estilos ABNT, Harvard, Vancouver, APA, etc.
33

Shulga, Nikita. "Rational approximations to two irrational numbers". Moscow Journal of Combinatorics and Number Theory 11, n.º 1 (30 de março de 2022): 1–10. http://dx.doi.org/10.2140/moscow.2022.11.1.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
34

MILLER, RUSSELL. "HTP-COMPLETE RINGS OF RATIONAL NUMBERS". Journal of Symbolic Logic 87, n.º 1 (22 de novembro de 2021): 252–72. http://dx.doi.org/10.1017/jsl.2021.96.

Texto completo da fonte
Resumo:
AbstractFor a ring R, Hilbert’s Tenth Problem $HTP(R)$ is the set of polynomial equations over R, in several variables, with solutions in R. We view $HTP$ as an enumeration operator, mapping each set W of prime numbers to $HTP(\mathbb {Z}[W^{-1}])$ , which is naturally viewed as a set of polynomials in $\mathbb {Z}[X_1,X_2,\ldots ]$ . It is known that for almost all W, the jump $W'$ does not $1$ -reduce to $HTP(R_W)$ . In contrast, we show that every Turing degree contains a set W for which such a $1$ -reduction does hold: these W are said to be HTP-complete. Continuing, we derive additional results regarding the impossibility that a decision procedure for $W'$ from $HTP(\mathbb {Z}[W^{-1}])$ can succeed uniformly on a set of measure $1$ , and regarding the consequences for the boundary sets of the $HTP$ operator in case $\mathbb {Z}$ has an existential definition in $\mathbb {Q}$ .
Estilos ABNT, Harvard, Vancouver, APA, etc.
35

FURUTA, Koji. "A moment problem on rational numbers". Hokkaido Mathematical Journal 46, n.º 2 (junho de 2017): 209–26. http://dx.doi.org/10.14492/hokmj/1498788018.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
36

Trushechkin, Anton S., e Igor V. Volovich. "Functional classical mechanics and rational numbers". P-Adic Numbers, Ultrametric Analysis, and Applications 1, n.º 4 (15 de novembro de 2009): 361–67. http://dx.doi.org/10.1134/s2070046609040086.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
37

Poonen, Bjorn. "Multivariable polynomial injections on rational numbers". Acta Arithmetica 145, n.º 2 (2010): 123–27. http://dx.doi.org/10.4064/aa145-2-2.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
38

Bradley, Christopher J. "87.06 A theorem on rational numbers". Mathematical Gazette 87, n.º 508 (março de 2003): 107–11. http://dx.doi.org/10.1017/s0025557200172201.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
39

Du, Juan, Ron Goldman e Xuhui Wang. "Rational curves over generalized complex numbers". Journal of Symbolic Computation 93 (julho de 2019): 56–84. http://dx.doi.org/10.1016/j.jsc.2018.04.010.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
40

Vallance, P. "Numbers alone cannot determine rational treatment". BMJ 310, n.º 6975 (4 de fevereiro de 1995): 330. http://dx.doi.org/10.1136/bmj.310.6975.330.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
41

Armstrong, Drew, Nicholas A. Loehr e Gregory S. Warrington. "Rational Parking Functions and Catalan Numbers". Annals of Combinatorics 20, n.º 1 (25 de novembro de 2015): 21–58. http://dx.doi.org/10.1007/s00026-015-0293-6.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
42

Wimmer, Harald K. "Realizations of matrices of rational numbers". Journal of Number Theory 25, n.º 2 (fevereiro de 1987): 169–83. http://dx.doi.org/10.1016/0022-314x(87)90023-0.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
43

Gill, Judith. "Mathematics and gender: Beyond rational numbers?" Mathematics Education Research Journal 9, n.º 3 (novembro de 1997): 343–46. http://dx.doi.org/10.1007/bf03217323.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
44

BENIOFF, PAUL. "COMPLEX RATIONAL NUMBERS IN QUANTUM MECHANICS". International Journal of Modern Physics B 20, n.º 11n13 (20 de maio de 2006): 1730–41. http://dx.doi.org/10.1142/s021797920603425x.

Texto completo da fonte
Resumo:
A binary representation of complex rational numbers and their arithmetic is described that is not based on qubits. It takes account of the fact that 0s in a qubit string do not contribute to the value of a number. They serve only as place holders. The representation is based on the distribution of four types of systems, corresponding to +1, -1, +i, -i, along an integer lattice. Complex rational numbers correspond to arbitrary products of four types of creation operators acting on the vacuum state. An occupation number representation is given for both bosons and fermions.
Estilos ABNT, Harvard, Vancouver, APA, etc.
45

Félix, Yves, e Jean-Claude Thomas. "Rational Betti numbers of configuration spaces". Topology and its Applications 102, n.º 2 (abril de 2000): 139–49. http://dx.doi.org/10.1016/s0166-8641(98)00148-5.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
46

Tamang, Bal Bahadur. "Identification of Algebraic and Transcendental Numbers Using Some Elementary Functions". Research Journal 8, n.º 1 (31 de dezembro de 2023): 12–21. http://dx.doi.org/10.3126/rj.v8i1.60986.

Texto completo da fonte
Resumo:
In this paper, to identify irrational numbers while appropriately emphasizing basic functions. All rational numbers can be expressed algebraically, but not all irrational numbers. Rational, irrational, algebraic numbers and transcendental numbers are mostly concerned with irrational numbers using some elementary functions.
Estilos ABNT, Harvard, Vancouver, APA, etc.
47

KWON, DOYONG. "A devil's staircase from rotations and irrationality measures for Liouville numbers". Mathematical Proceedings of the Cambridge Philosophical Society 145, n.º 3 (novembro de 2008): 739–56. http://dx.doi.org/10.1017/s0305004108001606.

Texto completo da fonte
Resumo:
AbstractFrom Sturmian and Christoffel words we derive a strictly increasing function Δ:[0,∞) → . This function is continuous at every irrational point, while at rational points, left-continuous but not right-continuous. Moreover, it assumes algebraic integers at rationals, and transcendental numbers at irrationals. We also see that the differentiation of Δ distinguishes some irrationality measures of real numbers.
Estilos ABNT, Harvard, Vancouver, APA, etc.
48

Alkan, Emre. "Series representing transcendental numbers that are not U-numbers". International Journal of Number Theory 11, n.º 03 (31 de março de 2015): 869–92. http://dx.doi.org/10.1142/s1793042115500487.

Texto completo da fonte
Resumo:
Using integral representations with carefully chosen rational functions as integrands, we find new families of transcendental numbers that are not U-numbers, according to Mahler's classification, represented by a series whose terms involve rising factorials and reciprocals of binomial coefficients analogous to Apéry type series. Explicit descriptions of these numbers are given as linear combinations with coefficients lying in a suitable real algebraic extension of rational numbers using elementary functions evaluated at arguments belonging to the same field. In this way, concrete examples of transcendental numbers which can be expressed as combinations of classical mathematical constants such as π and Baker periods are given together with upper bounds on their wn measures.
Estilos ABNT, Harvard, Vancouver, APA, etc.
49

Truss, John, e Edith Vargas-García. "Reconstructing the topology on monoids and polymorphism clones of reducts of the rationals". Contributions to Discrete Mathematics 16, n.º 2 (29 de junho de 2021): 1–22. http://dx.doi.org/10.55016/ojs/cdm.v16i2.71729.

Texto completo da fonte
Resumo:
We extend results from an earlier paper giving reconstruction results for the endomorphism monoid of the rational numbers under the strict and reflexive relations to the first order reducts of the rationals and the corresponding polymorphism clones. We also give some similar results about the coloured rationals.
Estilos ABNT, Harvard, Vancouver, APA, etc.
50

Moss, Joan. "Research, Reflection, Practice: Introducing Percents in Linear Measurement to Foster an Understanding of Rational-Number Operations". Teaching Children Mathematics 9, n.º 6 (fevereiro de 2003): 335–39. http://dx.doi.org/10.5951/tcm.9.6.0335.

Texto completo da fonte
Resumo:
How do we foster computational fluency with rational numbers when this topic is known to pose so many conceptual challenges for young students? How can we help students understand the operations of rational numbers when their grasp of the quantities involved in the rational-number system is often very limited? Traditional instruction in rational numbers focuses on rules and memorization. Teachers often give students instructions such as, “To add fractions, first find a common denominator, then add only the numerators” or “To add and subtract decimal numbers, line up the decimals, then do your calculations.”
Estilos ABNT, Harvard, Vancouver, APA, etc.
Oferecemos descontos em todos os planos premium para autores cujas obras estão incluídas em seleções literárias temáticas. Contate-nos para obter um código promocional único!

Vá para a bibliografia