Literatura científica selecionada sobre o tema "Numbers, Rational"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Numbers, Rational".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Numbers, Rational"
., Jyoti. "Rational Numbers". Journal of Advances and Scholarly Researches in Allied Education 15, n.º 5 (1 de julho de 2018): 220–22. http://dx.doi.org/10.29070/15/57856.
Texto completo da fonteScott Malcom, P. "Understanding Rational Numbers". Mathematics Teacher 80, n.º 7 (outubro de 1987): 518–21. http://dx.doi.org/10.5951/mt.80.7.0518.
Texto completo da fonteLennerstad, Håkan, e Lars Lundberg. "Decomposing rational numbers". Acta Arithmetica 145, n.º 3 (2010): 213–20. http://dx.doi.org/10.4064/aa145-3-1.
Texto completo da fontePEYTON JONES, SIMON. "12 Rational Numbers". Journal of Functional Programming 13, n.º 1 (janeiro de 2003): 149–52. http://dx.doi.org/10.1017/s0956796803001412.
Texto completo da fonteFrougny, Christiane, e Karel Klouda. "Rational base number systems forp-adic numbers". RAIRO - Theoretical Informatics and Applications 46, n.º 1 (22 de agosto de 2011): 87–106. http://dx.doi.org/10.1051/ita/2011114.
Texto completo da fonteXin Liu, Xin Liu, Xiaomeng Liu Xin Liu, Dan Luo Xiaomeng Liu, Gang Xu Dan Luo e Xiu-Bo Chen Gang Xu. "Confidentially Compare Rational Numbers under the Malicious Model". 網際網路技術學刊 25, n.º 3 (maio de 2024): 355–63. http://dx.doi.org/10.53106/160792642024052503002.
Texto completo da fonteRoy, Damien, e Johannes Schleischitz. "Numbers with Almost all Convergents in a Cantor Set". Canadian Mathematical Bulletin 62, n.º 4 (3 de dezembro de 2018): 869–75. http://dx.doi.org/10.4153/s0008439518000450.
Texto completo da fonteBelin, Mervenur, e Gülseren Karagöz Akar. "Exploring Real Numbers as Rational Number Sequences With Prospective Mathematics Teachers". Mathematics Teacher Educator 9, n.º 1 (1 de setembro de 2020): 63–87. http://dx.doi.org/10.5951/mte.2020.9999.
Texto completo da fonteKorhonen, Risto. "Approximation of real numbers with rational number sequences". Proceedings of the American Mathematical Society 137, n.º 01 (14 de agosto de 2008): 107–13. http://dx.doi.org/10.1090/s0002-9939-08-09479-3.
Texto completo da fonteGong, Linming, Bo Yang, Tao Xue, Jinguang Chen e Wei Wang. "Secure rational numbers equivalence test based on threshold cryptosystem with rational numbers". Information Sciences 466 (outubro de 2018): 44–54. http://dx.doi.org/10.1016/j.ins.2018.07.046.
Texto completo da fonteTeses / dissertações sobre o assunto "Numbers, Rational"
Ketkar, Pallavi S. (Pallavi Subhash). "Primitive Substitutive Numbers are Closed under Rational Multiplication". Thesis, University of North Texas, 1998. https://digital.library.unt.edu/ark:/67531/metadc278637/.
Texto completo da fonteCoward, Daniel R. "Sums of two rational cubes". Thesis, University of Oxford, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.320587.
Texto completo da fonteBrown, Bruce John Lindsay. "The initial grounding of rational numbers : an investigation". Thesis, Rhodes University, 2007. http://hdl.handle.net/10962/d1006351.
Texto completo da fonteShaughnessy, John F. "Finding Zeros of Rational Quadratic Forms". Scholarship @ Claremont, 2014. http://scholarship.claremont.edu/cmc_theses/849.
Texto completo da fonteLozier, Stephane. "On simultaneous approximation to a real number and its cube by rational numbers". Thesis, University of Ottawa (Canada), 2010. http://hdl.handle.net/10393/28701.
Texto completo da fonteMillsaps, Gayle M. "Interrelationships between teachers' content knowledge of rational number, their instructional practice, and students' emergent conceptual knowledge of rational number". Connect to resource, 2005. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1124225634.
Texto completo da fonteTitle from first page of PDF file. Document formatted into pages; contains xviii, 339 p.; also includes graphics (some col.). Includes bibliographical references (p. 296-306). Available online via OhioLINK's ETD Center
Carbone, Rose Elaine. "Elementary Teacher Candidates’ Understanding of Rational Numbers: An International Perspective". Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2012. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-79565.
Texto completo da fonteClark, David Alan. "The Euclidean algorithm for Galois extensions of the rational numbers". Thesis, McGill University, 1992. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=39408.
Texto completo da fonteLet E be an elliptic curve over a number field F. Suppose ($F: doubq rbrack le 4$ and $F(E lbrack q rbrack ) not subseteq F$ for all primes q such that F contains a primitive $q sp{ rm th}$ root of unity, then the reduced elliptic curve $ tilde{E}(F sb{ bf p})$ is cyclic infinitely often. In general, if $ Gamma$ a subgroup of $E(F)$ with the range of $ Gamma$ sufficiently large, there are infinitely many prime ideals p of F such that the reduced curve $ tilde{E}(F sb{ bf p}) = Gamma sb{ bf p}$, where $ Gamma sb{ bf p}$ is the reduction modulo p of $ Gamma$.
Bruyns, P. "Aspects of the group of homeomorphisms of the rational numbers". Thesis, University of Oxford, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.375224.
Texto completo da fonteLORIO, MARCELO NASCIMENTO. "APPROXIMATIONS OF REAL NUMBERS BY RATIONAL NUMBERS: WHY THE CONTINUED FRACTIONS CONVERGING PROVIDE THE BEST APPROXIMATIONS?" PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2014. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=23981@1.
Texto completo da fonteCOORDENAÇÃO DE APERFEIÇOAMENTO DO PESSOAL DE ENSINO SUPERIOR
Frações Contínuas são representações de números reais que independem da base de numeração escolhida. Quando se trata de aproximar números reais por frações, a escolha da base dez oculta, frequentemente, aproximações mais eficientes do que as exibe. Integrar conceitos de aproximações de números reais por frações contínuas com aspectos geométricos traz ao assunto uma abordagem diferenciada e bastante esclarecedora. O algoritmo de Euclides, por exemplo, ao ganhar significado geométrico, se torna um poderoso argumento para a visualização dessas aproximações. Os teoremas de Dirichlet, de Hurwitz-Markov e de Lagrange comprovam, definitivamente, que as melhores aproximações de números reais veem das frações contínuas, estimando seus erros com elegância técnica matemática incontestável.
Continued fractions are representations of real numbers that are independent of the choice of the numerical basis. The choice of basis ten frequently hides more than shows efficient approximations of real numbers by rational ones. Integrating approximations of real numbers by continued fractions with geometrical interpretations clarify the subject. The study of geometrical aspects of Euclids algorithm, for example, is a powerful method for the visualization of continued fractions approximations. Theorems of Dirichlet, Hurwitz-Markov and Lagrange show that, definitely, the best approximations of real numbers come from continued fractions, and the errors are estimated with elegant mathematical technique.
Livros sobre o assunto "Numbers, Rational"
Rational numbers: Poems. [Kirksville, Mo.]: Truman State University Press, 2000.
Encontre o texto completo da fonteH, Salzmann, ed. The classical fields: Structural features of the real and rational numbers. Cambridge: Cambridge University Press, 2007.
Encontre o texto completo da fonteBellos, Alex. Here's Looking at Euclid: A Surprising Excursion through the Astonishing World of Math. New York: Free Press, 2010.
Encontre o texto completo da fonteBellos, Alex. Here's looking at Euclid: A surprising excursion through the astonishing world of math. New York: Free Press, 2010.
Encontre o texto completo da fonteHertzberg, Hendrik. One million. New York: Times Books, 1993.
Encontre o texto completo da fonteHertzberg, Hendrik. One million. New York: Abrams Image, 2009.
Encontre o texto completo da fonteS, Bezuk Nadine, ed. Understanding rational numbers and proportions. Reston, Va: National Council of Teachers of Mathematics, 1994.
Encontre o texto completo da fonteP, Carpenter Thomas, Fennema Elizabeth e Romberg Thomas A, eds. Rational numbers: An integration of research. Hillsdale, N.J: Lawrence Erlbaum Associates, 1992.
Encontre o texto completo da fonteMary, Stroh, e Sopris West Inc, eds. TransMath: Making sense of rational numbers. Longmont, Colo: Cambium Learning/Sopris West, 2010.
Encontre o texto completo da fonteLappan, Glenda. Bits and pieces I: Understanding rational numbers. Palo Alto, CA: Dale Seymour Publications, 1998.
Encontre o texto completo da fonteCapítulos de livros sobre o assunto "Numbers, Rational"
Eriksson, Kenneth, Donald Estep e Claes Johnson. "Rational Numbers". In Applied Mathematics: Body and Soul, 71–86. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-662-05796-4_7.
Texto completo da fonteBhattacharjee, Meenaxi, Rögnvaldur G. Möller, Dugald Macpherson e Peter M. Neumann. "Rational Numbers". In Notes on Infinite Permutation Groups, 77–86. Gurgaon: Hindustan Book Agency, 1997. http://dx.doi.org/10.1007/978-93-80250-91-5_9.
Texto completo da fonteBhattacharjee, Meenaxi, Dugald Macpherson, Rögnvaldur G. Möller e Peter M. Neumann. "Rational numbers". In Lecture Notes in Mathematics, 77–86. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/bfb0092559.
Texto completo da fonteShah, Nita H., e Vishnuprasad D. Thakkar. "Rational Numbers". In Journey from Natural Numbers to Complex Numbers, 47–60. Boca Raton : CRC Press, 2021. | Series: Advances in mathematics and engineering: CRC Press, 2020. http://dx.doi.org/10.1201/9781003105244-3.
Texto completo da fonteNoël, Marie-Pascale, e Giannis Karagiannakis. "Rational numbers". In Effective Teaching Strategies for Dyscalculia and Learning Difficulties in Mathematics, 236–94. London: Routledge, 2022. http://dx.doi.org/10.4324/b22795-6.
Texto completo da fonteOvchinnikov, Sergei. "Rational Numbers". In Real Analysis: Foundations, 1–30. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-64701-8_1.
Texto completo da fonteStillwell, John. "Rational Points". In Numbers and Geometry, 111–42. New York, NY: Springer New York, 1998. http://dx.doi.org/10.1007/978-1-4612-0687-3_4.
Texto completo da fonteKramer, Jürg, e Anna-Maria von Pippich. "The Rational Numbers". In Springer Undergraduate Mathematics Series, 93–139. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-69429-0_3.
Texto completo da fonteStillwell, John. "The Rational Numbers". In Elements of Algebra, 18–37. New York, NY: Springer New York, 1994. http://dx.doi.org/10.1007/978-1-4757-3976-3_2.
Texto completo da fonteKay, Anthony. "Rational Numbers, ℚ". In Number Systems, 107–48. Boca Raton: Chapman and Hall/CRC, 2021. http://dx.doi.org/10.1201/9780429059353-6.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Numbers, Rational"
Vălcan, Teodor-Dumitru. "Structures of Fields of Rational Numbers, Isomorphic Between Them". In 10th International Conference Education, Reflection, Development. European Publisher, 2023. http://dx.doi.org/10.15405/epes.23056.8.
Texto completo da fontePion, Sylvain, e Chee K. Yap. "Constructive root bound for k-ary rational input numbers". In the nineteenth conference. New York, New York, USA: ACM Press, 2003. http://dx.doi.org/10.1145/777792.777831.
Texto completo da fonteCheng, Howard, e Eugene Zima. "On accelerated methods to evaluate sums of products of rational numbers". In the 2000 international symposium. New York, New York, USA: ACM Press, 2000. http://dx.doi.org/10.1145/345542.345581.
Texto completo da fonteMay, John P., B. David Saunders e David Harlan Wood. "Numerical techniques for computing the inertia of products of matrices of rational numbers". In ISSAC07: International Symposium on Symbolic and Algebraic Computation. New York, NY, USA: ACM, 2007. http://dx.doi.org/10.1145/1277500.1277520.
Texto completo da fonteDaghigh, Hassan, Somayeh Didari e Ruholla Khodakaramian Gilan. "A deterministic algorithm for discrete logarithm on some special elliptic curves over rational numbers". In 2015 12th International Iranian Society of Cryptology Conference on Information Security and Cryptology (ISCISC). IEEE, 2015. http://dx.doi.org/10.1109/iscisc.2015.7387912.
Texto completo da fontePinto, Hélia. "THE GALLERY WALK AS A WAY TO TRAIN PRESERVICE TEACHERS FOR TEACHING RATIONAL NUMBERS". In 16th International Conference on Education and New Learning Technologies. IATED, 2024. http://dx.doi.org/10.21125/edulearn.2024.1370.
Texto completo da fonteGe, Q. J., e Donglai Kang. "Rational Bézier and B-Spline Ruled Surface Patches". In ASME 1996 Design Engineering Technical Conferences and Computers in Engineering Conference. American Society of Mechanical Engineers, 1996. http://dx.doi.org/10.1115/96-detc/dac-1495.
Texto completo da fontePomrehn, Leonard P., e Panos Y. Papalambros. "Optimal Approximation of Real Values Using Rational Numbers With Application to the Kinematic Design of Gearboxes". In ASME 1993 Design Technical Conferences. American Society of Mechanical Engineers, 1993. http://dx.doi.org/10.1115/detc1993-0384.
Texto completo da fonteAliyev, Yagub N. "The 3x+1 Problem For Rational Numbers : Invariance of Periodic Sequences in 3x+1 Problem". In 2020 IEEE 14th International Conference on Application of Information and Communication Technologies (AICT). IEEE, 2020. http://dx.doi.org/10.1109/aict50176.2020.9368585.
Texto completo da fonteAnnathurai, K., Z. Zamzamir, S. Shafie, F. Rahmat, R. Masri e N. Hasan. "Development of InterFrac Matching Kit integrates game-based learning in the form 1 rational numbers topic". In INTERNATIONAL CONFERENCE ON INNOVATION IN MECHANICAL AND CIVIL ENGINEERING (i-MACE 2022). AIP Publishing, 2023. http://dx.doi.org/10.1063/5.0149564.
Texto completo da fonteRelatórios de organizações sobre o assunto "Numbers, Rational"
Lu, Chao. A Computational Library Using P-adic Arithmetic for Exact Computation With Rational Numbers in Quantum Computing. Fort Belvoir, VA: Defense Technical Information Center, novembro de 2005. http://dx.doi.org/10.21236/ada456488.
Texto completo da fonteLutz, Carsten. Adding Numbers to the SHIQ Description Logic - First Results. Aachen University of Technology, 2001. http://dx.doi.org/10.25368/2022.117.
Texto completo da fonteGonzales, Lorenzo. Ir-Rational Number Institute Report 2017-2018. Office of Scientific and Technical Information (OSTI), junho de 2018. http://dx.doi.org/10.2172/1440467.
Texto completo da fonteRosenfeld. L51741 Development of a Model for Fatigue Rating Shallow Unrestrained Dents. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), setembro de 1997. http://dx.doi.org/10.55274/r0010337.
Texto completo da fonteADA JOINT PROGRAM OFFICE ARLINGTON VA. Ada (Tradename) Compiler Validation Summary Report: Certificate Number: 880815W1.09143 Rational VAX-VMS, Version 2.0.45 Rational R1000 Series 200 Model 20 and VAX-11/750 (Host) and (Target). Fort Belvoir, VA: Defense Technical Information Center, agosto de 1988. http://dx.doi.org/10.21236/ada205908.
Texto completo da fonteKaiser, Frederick M. Interagency Collaborative Arrangements and Activities: Types, Rationales, Considerations (Interagency Paper, Number 5, June 2011). Fort Belvoir, VA: Defense Technical Information Center, junho de 2011. http://dx.doi.org/10.21236/ada551190.
Texto completo da fonteXiong, Wei. Rational Optimization of Microbial Processing for High Yield CO2-to-Isopropanol Conversion: Cooperative Research and Development Final Report, CRADA Number CRD-20-17114. Office of Scientific and Technical Information (OSTI), janeiro de 2024. http://dx.doi.org/10.2172/2283521.
Texto completo da fonteMunoz, Laura, Giulia Mascagni, Wilson Prichard e Fabrizio Santoro. Should Governments Tax Digital Financial Services? A Research Agenda to Understand Sector-Specific Taxes on DFS. Institute of Development Studies (IDS), fevereiro de 2022. http://dx.doi.org/10.19088/ictd.2022.002.
Texto completo da fonteVISTA RESEARCH CORP TUCSON AZ. Ada Compiler Validation Summary Report: Certificate Number: 940630W1. 11369 Rational Software Corporation VADS Sun4 => PowerPC, Product Number 2100- 01444, Version 6.2 Sun 4 Model SPARCcenter 2000 under Solaris 2.3 => Motorola MVME160 (PowerPC 601 Bare Machine). Fort Belvoir, VA: Defense Technical Information Center, julho de 1994. http://dx.doi.org/10.21236/ada285107.
Texto completo da fonteEmmerson, Stephen. Modulations through time. Norges Musikkhøgskole, agosto de 2018. http://dx.doi.org/10.22501/nmh-ar.530427.
Texto completo da fonte