Literatura científica selecionada sobre o tema "Numbers"

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Numbers".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Artigos de revistas sobre o assunto "Numbers"

1

Montémont, Véronique. "Roubaud’s number on numbers". Journal of Romance Studies 7, n.º 3 (dezembro de 2007): 111–21. http://dx.doi.org/10.3828/jrs.7.3.111.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Carbó-Dorca, Ramon. "Mersenne Numbers, Recursive Generation of Natural Numbers, and Counting the Number of Prime Numbers". Applied Mathematics 13, n.º 06 (2022): 538–43. http://dx.doi.org/10.4236/am.2022.136034.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Sudhakaraiah, A., A. Madhankumar, Pagidi Obulesu e A. Lakshmi Sowjanya. "73 Is the Only Largest Prime Power Number and Composite Power Numbers". International Journal of Science and Research (IJSR) 12, n.º 11 (5 de novembro de 2023): 1318–23. http://dx.doi.org/10.21275/sr231118184617.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Steele, G. Ander. "Carmichael numbers in number rings". Journal of Number Theory 128, n.º 4 (abril de 2008): 910–17. http://dx.doi.org/10.1016/j.jnt.2007.08.009.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Hofweber, T. "Number Determiners, Numbers, and Arithmetic". Philosophical Review 114, n.º 2 (1 de abril de 2005): 179–225. http://dx.doi.org/10.1215/00318108-114-2-179.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

., Jyoti. "Rational Numbers". Journal of Advances and Scholarly Researches in Allied Education 15, n.º 5 (1 de julho de 2018): 220–22. http://dx.doi.org/10.29070/15/57856.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Boast, Carl A., e Paul R. Sanberg. "Locomotor behavior: numbers, numbers, numbers!" Pharmacology Biochemistry and Behavior 27, n.º 3 (julho de 1987): 543. http://dx.doi.org/10.1016/0091-3057(87)90364-9.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

KÖKEN, Fikri, e Emre KANKAL. "Altered Numbers of Fibonacci Number Squared". Journal of New Theory, n.º 45 (31 de dezembro de 2023): 73–82. http://dx.doi.org/10.53570/jnt.1368751.

Texto completo da fonte
Resumo:
We investigate two types of altered Fibonacci numbers obtained by adding or subtracting a specific value $\{a\}$ from the square of the $n^{th}$ Fibonacci numbers $G^{(2)}_{F(n)}(a)$ and $H^{(2)}_{F(n)}(a)$. These numbers are significant as they are related to the consecutive products of the Fibonacci numbers. As a result, we establish consecutive sum-subtraction relations of altered Fibonacci numbers and their Binet-like formulas. Moreover, we explore greatest common divisor (GCD) sequences of r-successive terms of altered Fibonacci numbers represented by $\left\{G^{(2)}_{F(n), r}(a)\right\}$ and $\left\{H^{(2)}_{F(n), r}(a)\right\}$ such that $r\in\{1,2,3\}$ and $a\in\{1,4\}$. The sequences are based on the GCD properties of consecutive terms of the Fibonacci numbers and structured as periodic or Fibonacci sequences.
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Jędrzejak, Tomasz. "Congruent numbers over real number fields". Colloquium Mathematicum 128, n.º 2 (2012): 179–86. http://dx.doi.org/10.4064/cm128-2-3.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Fu, Ruiqin, Hai Yang e Jing Wu. "The Perfect Numbers of Pell Number". Journal of Physics: Conference Series 1237 (junho de 2019): 022041. http://dx.doi.org/10.1088/1742-6596/1237/2/022041.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.

Teses / dissertações sobre o assunto "Numbers"

1

Namasivayam, M. "Entropy numbers, s-numbers and embeddings". Thesis, University of Sussex, 1985. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.356519.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Allagan, Julian Apelete D. Johnson Peter D. "Choice numbers, Ohba numbers and Hall numbers of some complete k-partite graphs". Auburn, Ala, 2009. http://hdl.handle.net/10415/1780.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Fransson, Jonas. "Generalized Fibonacci Series Considered modulo n". Thesis, Linnéuniversitetet, Institutionen för matematik (MA), 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-26844.

Texto completo da fonte
Resumo:
In this thesis we are investigating identities regarding Fibonacci sequences. In particular we are examiningthe so called Pisano period, which is the period for the Fibonacci sequence considered modulo n to repeatitself. The theory shows that it suces to compute Pisano periods for primes. We are also looking atthe same problems for the generalized Pisano period, which can be described as the Pisano period forthe generalized Fibonacci sequence.
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Anderson, Crystal Lynn. "An Introduction to Number Theory Prime Numbers and Their Applications". Digital Commons @ East Tennessee State University, 2006. https://dc.etsu.edu/etd/2222.

Texto completo da fonte
Resumo:
The author has found, during her experience teaching students on the fourth grade level, that some concepts of number theory haven't even been introduced to the students. Some of these concepts include prime and composite numbers and their applications. Through personal research, the author has found that prime numbers are vital to the understanding of the grade level curriculum. Prime numbers are used to aide in determining divisibility, finding greatest common factors, least common multiples, and common denominators. Through experimentation, classroom examples, and homework, the author has introduced students to prime numbers and their applications.
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Chipatala, Overtone. "Polygonal numbers". Kansas State University, 2016. http://hdl.handle.net/2097/32923.

Texto completo da fonte
Resumo:
Master of Science
Department of Mathematics
Todd Cochrane
Polygonal numbers are nonnegative integers constructed and represented by geometrical arrangements of equally spaced points that form regular polygons. These numbers were originally studied by Pythagoras, with their long history dating from 570 B.C, and are often referred to by the Greek mathematicians. During the ancient period, polygonal numbers were described by units which were expressed by dots or pebbles arranged to form geometrical polygons. In his "Introductio Arithmetica", Nicomachus of Gerasa (c. 100 A.D), thoroughly discussed polygonal numbers. Other Greek authors who did remarkable work on the numbers include Theon of Smyrna (c. 130 A.D), and Diophantus of Alexandria (c. 250 A.D). Polygonal numbers are widely applied and related to various mathematical concepts. The primary purpose of this report is to define and discuss polygonal numbers in application and relation to some of these concepts. For instance, among other topics, the report describes what triangle numbers are and provides many interesting properties and identities that they satisfy. Sums of squares, including Lagrange's Four Squares Theorem, and Legendre's Three Squares Theorem are included in the paper as well. Finally, the report introduces and proves its main theorems, Gauss' Eureka Theorem and Cauchy's Polygonal Number Theorem.
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Tomasini, Alejandro. "Wittgensteinian Numbers". Pontificia Universidad Católica del Perú - Departamento de Humanidades, 2013. http://repositorio.pucp.edu.pe/index/handle/123456789/112986.

Texto completo da fonte
Resumo:
In this paper I reconstruct the tractarian view of natural numbers. i show how Wittgenstein uses his conceptual apparatus (operatlon, formal concept, internal property, logical form) to elaborate analternative to the logicist definition of number. Finally, I briefly examine sorneof the criticisms that have been raised against it.
En este trabajo reconstruyo la concepción tractariana de los números naturales. Muestro cómo Wittgenstein usa su aparato conceptual (operación, conceptoformal, propiedad interna, forma lógica) para elaborar una definición de número alternativa a la logicista. Por último, examino brevemente algunas de lascríticas que se han elevado en su contra.
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Hostetler, Joshua. "Surreal Numbers". VCU Scholars Compass, 2012. http://scholarscompass.vcu.edu/etd/2935.

Texto completo da fonte
Resumo:
The purpose of this thesis is to explore the Surreal Numbers from an elementary, con- structivist point of view, with the intention of introducing the numbers in a palatable way for a broad audience with minimal background in any specific mathematical field. Created from two recursive definitions, the Surreal Numbers form a class that contains a copy of the real numbers, transfinite ordinals, and infinitesimals, combinations of these, and in- finitely many numbers uniquely Surreal. Together with two binary operations, the surreal numbers form a field. The existence of the Surreal Numbers is proven, and the class is constructed from nothing, starting with the integers and dyadic rationals, continuing into the transfinite ordinals and the remaining real numbers, and culminating with the infinitesimals and uniquely surreal numbers. Several key concepts are proven regarding the ordering and containment properties of the numbers. The concept of a surreal continuum is introduced and demonstrated. The binary operations are explored and demonstrated, and field properties are proven, using many methods, including transfinite induction.
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Ho, Kwan-hung, e 何君雄. "On the prime twins conjecture and almost-prime k-tuples". Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2002. http://hub.hku.hk/bib/B29768421.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Chan, Ching-yin, e 陳靖然. "On k-tuples of almost primes". Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2013. http://hdl.handle.net/10722/195967.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Ketkar, Pallavi S. (Pallavi Subhash). "Primitive Substitutive Numbers are Closed under Rational Multiplication". Thesis, University of North Texas, 1998. https://digital.library.unt.edu/ark:/67531/metadc278637/.

Texto completo da fonte
Resumo:
Lehr (1991) proved that, if M(q, r) denotes the set of real numbers whose expansion in base-r is q-automatic i.e., is recognized by an automaton A = (Aq, Ar, ao, δ, φ) (or is the image under a letter to letter morphism of a fixed point of a substitution of constant length q) then M(q, r) is closed under addition and rational multiplication. Similarly if we let M(r) denote the set of real numbers α whose base-r digit expansion is ultimately primitive substitutive, i.e., contains a tail which is the image (under a letter to letter morphism) of a fixed point of a primitive substitution then in an attempt to generalize Lehr's result we show that the set M(r) is closed under multiplication by rational numbers. We also show that M(r) is not closed under addition.
Estilos ABNT, Harvard, Vancouver, APA, etc.

Livros sobre o assunto "Numbers"

1

Badiou, Alain. Number and numbers. Cambridge: Polity Press, 2008.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

1934-, Deza M., ed. Figurate numbers. Singapore: World Scientific, 2012.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Schleich, Wolfgang. Prime numbers 101: A primer on number theory. Hoboken, N.J: Wiley, 2008.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

illustrator, Knight Paula, ed. Numbers. Chicago, Illinois: Norwood House Press, 2016.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Aboff, Marcie. If you were an odd number. Mankato, MN: Picture Window Books, 2009.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Glynne-Jones, Tim. The book of numbers. Edison, NJ: Chartwell Books, 2008.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Montgomery, Hugh L. Multiplicative number theory I: Classical theory. Cambridge, UK: Cambridge University Press, 2006.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Parshin, A. N. Number Theory IV: Transcendental Numbers. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Ming, Nai-Ta. New theory of real numbers especially regarding "infinite" and "zero". Hamburg: Verlag Dr. Kovač, 1996.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Dave, Hewitt, Wigley Alan e Association of Teachers of Mathematics., eds. Developing number: Complements, numbers, tables. Derby: Association of Teachers of Mathematics, 2000.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.

Capítulos de livros sobre o assunto "Numbers"

1

Hart, F. Mary. "Numbers and Number Systems". In Guide to Analysis, 1–24. London: Macmillan Education UK, 1988. http://dx.doi.org/10.1007/978-1-349-09390-8_1.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Hart, F. Mary. "Numbers and Number Systems". In Guide to Analysis, 3–29. London: Macmillan Education UK, 2001. http://dx.doi.org/10.1007/978-1-349-87194-0_2.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Loya, Paul. "Numbers, Numbers, and More Numbers". In Amazing and Aesthetic Aspects of Analysis, 29–146. New York, NY: Springer New York, 2017. http://dx.doi.org/10.1007/978-1-4939-6795-7_2.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Vorobiew, Nicolai N. "Number-Theoretic Properties of Fibonacci Numbers". In Fibonacci Numbers, 51–87. Basel: Birkhäuser Basel, 2002. http://dx.doi.org/10.1007/978-3-0348-8107-4_3.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Cornil, Jack-Michel, e Philippe Testud. "Real Numbers, Complex Numbers". In An Introduction to Maple V, 57–67. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-642-56729-2_4.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Rassias, Michael Th. "Perfect numbers, Fermat numbers". In Problem-Solving and Selected Topics in Number Theory, 29–35. New York, NY: Springer New York, 2010. http://dx.doi.org/10.1007/978-1-4419-0495-9_3.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Fisher, R. B., T. P. Breckon, K. Dawson-Howe, A. Fitzgibbon, C. Robertson, E. Trucco e C. K. I. Williams. "Numbers". In Dictionary of Computer Vision and Image Processing, 1–6. Chichester, UK: John Wiley & Sons, Ltd, 2016. http://dx.doi.org/10.1002/9781119286462.ch1.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Vince, John. "Numbers". In Mathematics for Computer Graphics, 3–9. London: Springer London, 2014. http://dx.doi.org/10.1007/978-1-4471-6290-2_2.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Oberguggenberger, Michael, e Alexander Ostermann. "Numbers". In Analysis for Computer Scientists, 1–11. London: Springer London, 2011. http://dx.doi.org/10.1007/978-0-85729-446-3_1.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Vince, John. "Numbers". In Mathematics for Computer Graphics, 5–30. London: Springer London, 2017. http://dx.doi.org/10.1007/978-1-4471-7336-6_2.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.

Trabalhos de conferências sobre o assunto "Numbers"

1

Lim, John T., e Larry C. Thaler. "Numbers, Numbers Everywhere!" In SMPTE Advanced Television and Electronic Imaging Conference. IEEE, 1993. http://dx.doi.org/10.5594/m00684.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Milinkovic, Luka, Marija Antic e Zoran Cica. "Pseudo-random number generator based on irrational numbers". In TELSIKS 2011 - 2011 10th International Conference on Telecommunication in Modern Satellite, Cable and Broadcasting Services. IEEE, 2011. http://dx.doi.org/10.1109/telsks.2011.6143212.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Watanabe, Ricardo Augusto, Estevao Esmi Laureano e Cibele Cristina Trinca Watanabe. "Fuzzy Octonion Numbers and Fuzzy Hypercomplex Numbers". In 2019 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). IEEE, 2019. http://dx.doi.org/10.1109/fuzz-ieee.2019.8858970.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Irmak, Nurettin, e Abdullah Açikel. "On perfect numbers close to Tribonacci numbers". In 1ST INTERNATIONAL CONFERENCE ON MATHEMATICAL AND RELATED SCIENCES (ICMRS 2018). Author(s), 2018. http://dx.doi.org/10.1063/1.5047878.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Hajime, Kaneko, e Takao Komatsu. "Expansion of real numbers by algebraic numbers". In DIOPHANTINE ANALYSIS AND RELATED FIELDS: DARF 2007/2008. AIP, 2008. http://dx.doi.org/10.1063/1.2841897.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Berthe, Valerie, e Laurent Imbert. "On converting numbers to the double-base number system". In Optical Science and Technology, the SPIE 49th Annual Meeting, editado por Franklin T. Luk. SPIE, 2004. http://dx.doi.org/10.1117/12.558895.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Jeong, Young-Seob, Kyojoong Oh, Chung-Ki Cho e Ho-Jin Choi. "Pseudo Random Number Generation Using LSTMs and Irrational Numbers". In 2018 IEEE International Conference on Big Data and Smart Computing (BigComp). IEEE, 2018. http://dx.doi.org/10.1109/bigcomp.2018.00091.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Sirisantisamrid, Kaset. "Identification of Thai characters and numbers on plate number". In 2017 9th International Conference on Information Technology and Electrical Engineering (ICITEE). IEEE, 2017. http://dx.doi.org/10.1109/iciteed.2017.8250447.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Robinson, Susan J., Graceline Williams, Aman Parnami, Jinhyun Kim, Emmett McGregor, Dana Chandler e Ali Mazalek. "Storied numbers". In the 2014 ACM international conference. New York, New York, USA: ACM Press, 2014. http://dx.doi.org/10.1145/2602299.2602308.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

"Page numbers". In 2008 Annual Reliability and Maintainability Symposium. IEEE, 2008. http://dx.doi.org/10.1109/rams.2008.4925850.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.

Relatórios de organizações sobre o assunto "Numbers"

1

Reynolds, J. K., e J. Postel. Assigned numbers. RFC Editor, abril de 1985. http://dx.doi.org/10.17487/rfc0943.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Reynolds, J. K., e J. Postel. Assigned numbers. RFC Editor, dezembro de 1985. http://dx.doi.org/10.17487/rfc0960.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Reynolds, J. K., e J. Postel. Assigned numbers. RFC Editor, novembro de 1986. http://dx.doi.org/10.17487/rfc0990.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Reynolds, J. K., e J. Postel. Internet numbers. RFC Editor, março de 1987. http://dx.doi.org/10.17487/rfc0997.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Reynolds, J. K., e J. Postel. Assigned numbers. RFC Editor, maio de 1987. http://dx.doi.org/10.17487/rfc1010.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Romano, S., e M. K. Stahl. Internet numbers. RFC Editor, novembro de 1987. http://dx.doi.org/10.17487/rfc1020.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Reynolds, J. K., e J. Postel. Assigned numbers. RFC Editor, março de 1990. http://dx.doi.org/10.17487/rfc1060.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Romano, S., M. K. Stahl e M. Recker. Internet numbers. RFC Editor, agosto de 1988. http://dx.doi.org/10.17487/rfc1062.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Romano, S., M. K. Stahl e M. Recker. Internet numbers. RFC Editor, agosto de 1989. http://dx.doi.org/10.17487/rfc1117.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Kirkpatrick, S., M. K. Stahl e M. Recker. Internet numbers. RFC Editor, julho de 1990. http://dx.doi.org/10.17487/rfc1166.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Oferecemos descontos em todos os planos premium para autores cujas obras estão incluídas em seleções literárias temáticas. Contate-nos para obter um código promocional único!

Vá para a bibliografia