Artigos de revistas sobre o tema "Nuclear fuel pellet"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Nuclear fuel pellet".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Dooley, Patricia, Dakota Contryman, Addie Hervey, Robert Ivers, Isabella Reddish e Yuze Song. "Design of an optimized nuclear fuel pellet". Nuclear Science and Technology Open Research 2 (9 de janeiro de 2024): 1. http://dx.doi.org/10.12688/nuclscitechnolopenres.17443.1.
Texto completo da fonteHeikinheimo, Janne, Teemu Kärkelä, Václav Tyrpekl, Matĕj̆ Niz̆n̆anský, Mélany Gouëllo e Unto Tapper. "Iodine release from high-burnup fuel structures: Separate-effect tests and simulated fuel pellets for better understanding of iodine behaviour in nuclear fuels". MRS Advances 6, n.º 47-48 (dezembro de 2021): 1026–31. http://dx.doi.org/10.1557/s43580-021-00175-1.
Texto completo da fonteMirsalimov, Vagif. "Crack nucleation in rod-type nuclear fuel pellet". Mathematics and Mechanics of Solids 24, n.º 3 (1 de fevereiro de 2018): 668–85. http://dx.doi.org/10.1177/1081286517753977.
Texto completo da fonteBeloborodov, Alexey V., Evgeny V. Vlasov, Leonid V. Finogenov e Peter S. Zav’yalov. "High Productive Optoelectronic Pellets Surface Inspection for Nuclear Reactors". Key Engineering Materials 437 (maio de 2010): 165–69. http://dx.doi.org/10.4028/www.scientific.net/kem.437.165.
Texto completo da fonteJoseph, Odii Christopher, Agyekum Ephraim Bonah e Bright Kwame Afornu. "Effect of Dual Surface Cooling on the Temperature Distribution of a Nuclear Fuel Pellet". Key Engineering Materials 769 (abril de 2018): 296–310. http://dx.doi.org/10.4028/www.scientific.net/kem.769.296.
Texto completo da fonteHalabuk, Dávid, e Jiří Martinec. "CALCULATION OF STRESS AND DEFORMATION IN FUEL ROD CLADDING DURING PELLET-CLADDING INTERACTION". Acta Polytechnica 55, n.º 6 (31 de dezembro de 2015): 384. http://dx.doi.org/10.14311/ap.2015.55.0384.
Texto completo da fonteNguyen, Van Tung, Trong Hung Nguyen, Thanh Thuy Nguyen e Duy Minh Cao. "Predicting behavior of AP-1000 nuclear reactor fuel rod under steady state operating condition by using FRAPCON-4.0 software". Nuclear Science and Technology 8, n.º 2 (1 de setembro de 2021): 43–50. http://dx.doi.org/10.53747/jnst.v8i2.90.
Texto completo da fonteKim, Seyeon, e Sanghoon Lee. "Simplified Model of a High Burnup Spent Nuclear Fuel Rod under Lateral Impact Considering a Stress-Based Failure Criterion". Metals 11, n.º 10 (14 de outubro de 2021): 1631. http://dx.doi.org/10.3390/met11101631.
Texto completo da fonteMarchetti, Mara, Michel Herm, Tobias König, Simone Manenti e Volker Metz. "Actinides induced irradiation damage and swelling effect in irradiated Zircaloy-4 after 30 years of storage". Safety of Nuclear Waste Disposal 1 (10 de novembro de 2021): 7–8. http://dx.doi.org/10.5194/sand-1-7-2021.
Texto completo da fonteKeyvan, Shahla, Xiaolong Song e Mark Kelly. "Nuclear fuel pellet inspection using artificial neural networks". Journal of Nuclear Materials 264, n.º 1-2 (janeiro de 1999): 141–54. http://dx.doi.org/10.1016/s0022-3115(98)00464-4.
Texto completo da fonteKWON, Y. D., S. B. KWON, K. T. RHO, M. S. KIM e H. J. SONG. "THERMO-ELASTIC-PLASTIC-CREEP FINITE ELEMENT ANALYSES OF ANNULAR NUCLEAR FUELS". International Journal of Modern Physics: Conference Series 06 (janeiro de 2012): 379–84. http://dx.doi.org/10.1142/s2010194512003479.
Texto completo da fonteSampaio Ribeiro, Luciana, Francisco Javier Rios e Armindo Santos. "Porous Stainless Steel Microsphere Synthesis by a Nonconventional Powder Metallurgy Process Useful in the Cermet-Type Advanced Nuclear Fuel Fabrication". Journal of Nanomaterials 2023 (29 de abril de 2023): 1–22. http://dx.doi.org/10.1155/2023/3555763.
Texto completo da fonteKim, Young-Hwan, Yung-Zun Cho e Jin-Mok Hur. "Experimental Approaches for Manufacturing of Simulated Cladding and Simulated Fuel Rod for Mechanical Decladder". Science and Technology of Nuclear Installations 2020 (24 de janeiro de 2020): 1–12. http://dx.doi.org/10.1155/2020/1905019.
Texto completo da fonteVlasov, E. V., A. V. Beloborodov, P. S. Zav'yalov e D. G. Syretskiy. "Control of the appearance of fuel pellets ends surfaces in a conveyor production". Дефектоскопия, n.º 7 (15 de julho de 2023): 33–43. http://dx.doi.org/10.31857/s0130308223070047.
Texto completo da fonteCantini, Federico, Martina Adorni e Francesco D’Auria. "Nuclear Fuel Modelling During Power Ramp". Journal of Energy - Energija 62, n.º 1-4 (18 de julho de 2022): 68–80. http://dx.doi.org/10.37798/2013621-4219.
Texto completo da fonteReigel, M., C. Donohoue, Douglas Burkes, John J. Moore e J. R. Kennedy. "Application of Combustion Synthesis to the Production of Actinide Bearing Nitride Ceramic Nuclear Fuels". Materials Science Forum 561-565 (outubro de 2007): 1749–52. http://dx.doi.org/10.4028/www.scientific.net/msf.561-565.1749.
Texto completo da fonteFerry, C., J. Radwan e H. Palancher. "Review about the Effect of He on the Microstructure of Spent Nuclear Fuel in a Repository". MRS Advances 1, n.º 62 (2016): 4147–56. http://dx.doi.org/10.1557/adv.2017.202.
Texto completo da fonteChernov, Igor, Аnton Kushtym, Volodymyr Tatarinov e Dmytro Kutniy. "Manufacturing Features and Characteristics of Uranium Dioxide Pellets for Subcritical Assembly Fuel Rods". 3, n.º 3 (2 de setembro de 2022): 59–66. http://dx.doi.org/10.26565/2312-4334-2022-3-08.
Texto completo da fonteDemarco, Gustavo L., e Armando C. Marino. "3D Finite Elements Modelling for Design and Performance Analysis of Pellets". Science and Technology of Nuclear Installations 2011 (2011): 1–10. http://dx.doi.org/10.1155/2011/843491.
Texto completo da fonteForsberg, K., L. O. Jernkvist e A. R. Massih. "Modeling oxygen redistribution in UO2+ fuel pellet". Journal of Nuclear Materials 528 (janeiro de 2020): 151829. http://dx.doi.org/10.1016/j.jnucmat.2019.151829.
Texto completo da fonteKusumoputro, Benyamin, Rozandi Prarizky, Wahidin Wahab, Dede Sutarya e Li Na. "Assesment of Quality Classification of Green Pellets for Nuclear Power Plants Using Improved Levenberg-Marquardt Algorithm". Advanced Materials Research 608-609 (dezembro de 2012): 825–34. http://dx.doi.org/10.4028/www.scientific.net/amr.608-609.825.
Texto completo da fonteKusumoputro, Benyamin, Dede Sutarya e Li Na. "Nuclear Power Plant Fuel’s Quality Classification Using Ensemble Back Propagation Neural Networks". Advanced Materials Research 685 (abril de 2013): 367–71. http://dx.doi.org/10.4028/www.scientific.net/amr.685.367.
Texto completo da fonteBelov, Alexander I., Randy W. L. Fong, Brian W. Leitch, Thambiayah Nitheanandan e Anthony Williams. "CHARACTERIZING HIGH-TEMPERATURE DEFORMATION OF INTERNALLY HEATED NUCLEAR FUEL ELEMENT SIMULATORS". CNL Nuclear Review 5, n.º 1 (junho de 2016): 67–84. http://dx.doi.org/10.12943/cnr.2016.00005.
Texto completo da fonteEidelpes, Elmar, Luis Francisco Ibarra e Ricardo Antonio Medina. "Ring compression tests on un-irradiated nuclear fuel rod cladding considering fuel pellet support". Journal of Nuclear Materials 510 (novembro de 2018): 446–59. http://dx.doi.org/10.1016/j.jnucmat.2018.08.009.
Texto completo da fonteCherezov, Alexey, Jinsu Park, Hanjoo Kim, Jiwon Choe e Deokjung Lee. "A Multi-Physics Adaptive Time Step Coupling Algorithm for Light-Water Reactor Core Transient and Accident Simulation". Energies 13, n.º 23 (2 de dezembro de 2020): 6374. http://dx.doi.org/10.3390/en13236374.
Texto completo da fonteMori, Y., K. Ishii, R. Hanayama, S. Okihara, Y. Kitagawa, Y. Nishimura, O. Komeda et al. "Ten hertz bead pellet injection and laser engagement". Nuclear Fusion 62, n.º 3 (3 de fevereiro de 2022): 036028. http://dx.doi.org/10.1088/1741-4326/ac3d69.
Texto completo da fonteCenteno-Pérez, J., C. G. Aguilar-Madera, G. Espinosa-Paredes, E. C. Herrera-Hernández e A. D. Pérez-Valseca. "Upscaled elasticity modulus for nuclear fuel pellet (UO2) with porosity effects". Journal of Nuclear Materials 568 (setembro de 2022): 153875. http://dx.doi.org/10.1016/j.jnucmat.2022.153875.
Texto completo da fonteTsibulskiy, S. "COMPARISON OF HOMOGENEOUS AND HETEROGENEOUS USE OF ENERGY PLUTONIUM IN VVER". PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. SERIES: NUCLEAR AND REACTOR CONSTANTS 2019, n.º 2 (26 de junho de 2019): 64–67. http://dx.doi.org/10.55176/2414-1038-2019-2-64-67.
Texto completo da fonteMAHDAVI, M., e B. JALALY. "EFFECTS OF DEUTERIUM–LITHIUM FUSION REACTION ON INTERNAL TRITIUM BREEDING". International Journal of Modern Physics E 19, n.º 11 (novembro de 2010): 2123–32. http://dx.doi.org/10.1142/s0218301310016545.
Texto completo da fonteWang, Qibiao, Yushi Luo, Yong Sun, Yang Wu, Bin Tang, Shuming Peng e Xianguo Tuo. "Weak-Edge Extraction of Nuclear Plate Fuel Neutron Images at Low Lining Degree". Applied Sciences 13, n.º 8 (19 de abril de 2023): 5090. http://dx.doi.org/10.3390/app13085090.
Texto completo da fonteKuzmin, Ilya V., Anton Yu Leshchenko, Sergey V. Pavlov, Rinat N. Shamsutdinov e Yuriy S. Mochalov. "Test bench for gas-dynamic studies in the furnace channel for nuclear fuel pellet sintering *". Nuclear Energy and Technology 5, n.º 2 (21 de junho de 2019): 171–75. http://dx.doi.org/10.3897/nucet.5.36479.
Texto completo da fonteLee, Sanghoon, e Seyeon Kim. "Development of Equivalent Beam Model of High Burnup Spent Nuclear Fuel Rods under Lateral Impact Loading". Metals 10, n.º 4 (3 de abril de 2020): 470. http://dx.doi.org/10.3390/met10040470.
Texto completo da fonteKim, Ki Hwan, Jong Man Park, Don Bae Lee, Chul Goo Chi e Chang Kyu Kim. "Fabrication of Monolithic UAl2 Pellet for High-Density Nuclear Fuel". Advanced Materials Research 26-28 (outubro de 2007): 925–28. http://dx.doi.org/10.4028/www.scientific.net/amr.26-28.925.
Texto completo da fonteYusibani, Elin, Fitria Helmiza, Fashbir Fashbir e Sidik Permana. "Simulation on the Effect of Coolant Inlet Temperature and Mass-Flowrate Variations to the Temperature Distribution in Single Pellet Thermal Reactor Core". Jurnal Penelitian Fisika dan Aplikasinya (JPFA) 11, n.º 1 (23 de julho de 2021): 63–71. http://dx.doi.org/10.26740/jpfa.v11n1.p63-71.
Texto completo da fonteFidalgo, Alexandre Barreiro, Olivia Roth, Anders Puranen, Lena Z. Evins e Kastriot Spahiu. "Aqueous leaching of ADOPT and standard UO2 spent nuclear fuel under H2 atmosphere". MRS Advances 5, n.º 3-4 (2020): 167–75. http://dx.doi.org/10.1557/adv.2020.69.
Texto completo da fonteSi, Shengyi. "Multiphysics Model Development and the Core Analysis for In Situ Breeding and Burning Reactor". Science and Technology of Nuclear Installations 2013 (2013): 1–14. http://dx.doi.org/10.1155/2013/154706.
Texto completo da fonteSTANKUNAS, GEDIMINAS. "FRACTAL MODEL OF FISSION PRODUCT RELEASE IN NUCLEAR FUEL". International Journal of Modern Physics C 23, n.º 09 (setembro de 2012): 1250057. http://dx.doi.org/10.1142/s012918311250057x.
Texto completo da fonteYANAGISAWA, Kazuaki, e Harald DEVOLD. "Pellet-cladding interaction on light water reactor fuel. (II) BWR type fuel rod." Journal of the Atomic Energy Society of Japan / Atomic Energy Society of Japan 28, n.º 8 (1986): 771–82. http://dx.doi.org/10.3327/jaesj.28.771.
Texto completo da fonteYANAGISAWA, Kazuaki, Yoshiaki KONDO e Erik KOLSTAD. "Pellet-cladding interaction on light water reactor fuel, (I)". Journal of the Atomic Energy Society of Japan / Atomic Energy Society of Japan 28, n.º 7 (1986): 641–57. http://dx.doi.org/10.3327/jaesj.28.641.
Texto completo da fonteMarchal, N., C. Campos e C. Garnier. "Finite element simulation of Pellet-Cladding Interaction (PCI) in nuclear fuel rods". Computational Materials Science 45, n.º 3 (maio de 2009): 821–26. http://dx.doi.org/10.1016/j.commatsci.2008.10.015.
Texto completo da fonteLin, Wei Keng, Jong Rong Wang, Yung Shin Tseng e Jui En Chang. "Using CFD Couple with Visual Basic to Investigate the Thermal Behavior for Fuel Rod Bowing Problem". Advanced Materials Research 651 (janeiro de 2013): 688–93. http://dx.doi.org/10.4028/www.scientific.net/amr.651.688.
Texto completo da fonteCordara, Theo, Hannah Smith, Ritesh Mohun, Laura J. Gardner, Martin C. Stennett, Neil C. Hyatt e Claire L. Corkhill. "Hot Isostatic Pressing (HIP): A novel method to prepare Cr-doped UO2 nuclear fuel". MRS Advances 5, n.º 1-2 (2020): 45–53. http://dx.doi.org/10.1557/adv.2020.62.
Texto completo da fonteFrancon, Virginie, Marion Fregonese, Hiroshi Abe e Yutaka Watanabe. "Iodine-Induced Stress Corrosion Cracking of Zircaloy-4: Identification of Critical Parameters Involved in Intergranular to Transgranular Crack Propagation". Solid State Phenomena 183 (dezembro de 2011): 49–56. http://dx.doi.org/10.4028/www.scientific.net/ssp.183.49.
Texto completo da fonteJohnston, Craig M. T., e G. Cornelis van Kooten. "Economic consequences of increased bioenergy demand". Forestry Chronicle 90, n.º 05 (outubro de 2014): 636–42. http://dx.doi.org/10.5558/tfc2014-128.
Texto completo da fonteNakamura, H., T. Kubo, T. Karino, H. Kato e S. Kawata. "Fuel pellet injection into heavy-ion inertial fusion reactor". High Energy Density Physics 35 (junho de 2020): 100741. http://dx.doi.org/10.1016/j.hedp.2019.100741.
Texto completo da fontePauzi, Anas Muhamad, Hector Iacovides e Andrea Cioncolini. "Pragmatic modelling of axial flow-induced vibration (FIV) for nuclear fuel rods". IOP Conference Series: Materials Science and Engineering 1285, n.º 1 (1 de julho de 2023): 012001. http://dx.doi.org/10.1088/1757-899x/1285/1/012001.
Texto completo da fonteKim, Dong-Joo, Keon Sik Kim, Dong Seok Kim, Jang Soo Oh, Jong Hun Kim, Jae Ho Yang e Yang-Hyun Koo. "Development status of microcell UO2 pellet for accident-tolerant fuel". Nuclear Engineering and Technology 50, n.º 2 (março de 2018): 253–58. http://dx.doi.org/10.1016/j.net.2017.12.008.
Texto completo da fonteKonashi, Kenji, e Michio Yamawaki. "Utilization of Hydride Materials in Nuclear Reactors". Advances in Science and Technology 73 (outubro de 2010): 51–58. http://dx.doi.org/10.4028/www.scientific.net/ast.73.51.
Texto completo da fonteKeyvan, Shahla, Mark L. Kelly e Xiaolong Song. "Feature Extraction for Artificial Neural Network Application to Fabricated Nuclear Fuel Pellet INSPECTION". Nuclear Technology 119, n.º 3 (setembro de 1997): 269–75. http://dx.doi.org/10.13182/nt97-a35402.
Texto completo da fonteZhang, Bin, Mengmeng Liu, Yongzhi Tian, Ge Wu, Xiaohui Yang, Songyang Shi e Jianning Li. "Defect inspection system of nuclear fuel pellet end faces based on machine vision". Journal of Nuclear Science and Technology 57, n.º 6 (2 de janeiro de 2020): 617–23. http://dx.doi.org/10.1080/00223131.2019.1708827.
Texto completo da fonte