Artigos de revistas sobre o tema "NOx precursors"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "NOx precursors".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Xu, Liting, Qilei Yang, Lihua Hu, et al. "Insights over Titanium Modified FeMgOx Catalysts for Selective Catalytic Reduction of NOx with NH3: Influence of Precursors and Crystalline Structures." Catalysts 9, no. 6 (2019): 560. http://dx.doi.org/10.3390/catal9060560.
Texto completo da fonteMorin, S., R. Sander та J. Savarino. "Simulation of the diurnal variations of the oxygen isotope anomaly (Δ<sup>17</sup>O) of reactive atmospheric species". Atmospheric Chemistry and Physics Discussions 10, № 12 (2010): 30405–51. http://dx.doi.org/10.5194/acpd-10-30405-2010.
Texto completo da fonteSINHA, PRIYANKA, Siddharth Singh, and POOJA SAROJ. "Relationship of Surface Ozone (O3) with its precursors and meteorological parameters over New Delhi, India." MAUSAM 73, no. 4 (2022): 829–42. http://dx.doi.org/10.54302/mausam.v73i4.5510.
Texto completo da fonteWang, Yujue, Min Hu, Yuchen Wang, et al. "The formation of nitro-aromatic compounds under high NO<sub><i>x</i></sub> and anthropogenic VOC conditions in urban Beijing, China." Atmospheric Chemistry and Physics 19, no. 11 (2019): 7649–65. http://dx.doi.org/10.5194/acp-19-7649-2019.
Texto completo da fonteHolland, Rayne, Katya Seifert, Eric Saboya, M. Anwar H. Khan, Richard G. Derwent, and Dudley E. Shallcross. "Elucidating the Effects of COVID-19 Lockdowns in the UK on the O3-NOx-VOC Relationship." Atmosphere 15, no. 5 (2024): 607. http://dx.doi.org/10.3390/atmos15050607.
Texto completo da fonteMorin, S., R. Sander та J. Savarino. "Simulation of the diurnal variations of the oxygen isotope anomaly (Δ<sup>17</sup>O) of reactive atmospheric species". Atmospheric Chemistry and Physics 11, № 8 (2011): 3653–71. http://dx.doi.org/10.5194/acp-11-3653-2011.
Texto completo da fonteCheng, Shan, Kehui Yao, Hong Tian, Ting Yang, and Lianghui Chen. "Synergistic Catalytic Effects on Nitrogen Transformation during Biomass Pyrolysis: A Focus on Proline as a Model Compound." Molecules 29, no. 13 (2024): 3118. http://dx.doi.org/10.3390/molecules29133118.
Texto completo da fonteMarais, E. A., D. J. Jacob, J. L. Jimenez, et al. "Aqueous-phase mechanism for secondary organic aerosol formation from isoprene: application to the Southeast United States and co-benefit of SO<sub>2</sub> emission controls." Atmospheric Chemistry and Physics Discussions 15, no. 21 (2015): 32005–47. http://dx.doi.org/10.5194/acpd-15-32005-2015.
Texto completo da fonteSchroeder, Jason R., Chenxia Cai, Jin Xu, et al. "Changing ozone sensitivity in the South Coast Air Basin during the COVID-19 period." Atmospheric Chemistry and Physics 22, no. 19 (2022): 12985–3000. http://dx.doi.org/10.5194/acp-22-12985-2022.
Texto completo da fonteMarais, E. A., D. J. Jacob, J. L. Jimenez, et al. "Aqueous-phase mechanism for secondary organic aerosol formation from isoprene: application to the southeast United States and co-benefit of SO<sub>2</sub> emission controls." Atmospheric Chemistry and Physics 16, no. 3 (2016): 1603–18. http://dx.doi.org/10.5194/acp-16-1603-2016.
Texto completo da fonteSeltzer, K. M., W. Vizuete, and B. H. Henderson. "Evaluation of updated nitric acid chemistry on ozone precursors and radiative effects." Atmospheric Chemistry and Physics Discussions 15, no. 3 (2015): 3219–55. http://dx.doi.org/10.5194/acpd-15-3219-2015.
Texto completo da fonteLi, Ruiyuan, Miaoqing Xu, Manchun Li, et al. "Identifying the spatiotemporal variations in ozone formation regimes across China from 2005 to 2019 based on polynomial simulation and causality analysis." Atmospheric Chemistry and Physics 21, no. 20 (2021): 15631–46. http://dx.doi.org/10.5194/acp-21-15631-2021.
Texto completo da fonteSavarino, J., W. C. Vicars, M. Legrand, et al. "Oxygen isotope mass balance of atmospheric nitrate at Dome C, East Antarctica, during the OPALE campaign." Atmospheric Chemistry and Physics Discussions 15, no. 17 (2015): 24041–83. http://dx.doi.org/10.5194/acpd-15-24041-2015.
Texto completo da fonteSavarino, Joël, William C. Vicars, Michel Legrand, et al. "Oxygen isotope mass balance of atmospheric nitrate at Dome C, East Antarctica, during the OPALE campaign." Atmospheric Chemistry and Physics 16, no. 4 (2016): 2659–73. http://dx.doi.org/10.5194/acp-16-2659-2016.
Texto completo da fonteNussbaumer, Clara M., Horst Fischer, Jos Lelieveld, and Andrea Pozzer. "What controls ozone sensitivity in the upper tropical troposphere?" Atmospheric Chemistry and Physics 23, no. 19 (2023): 12651–69. http://dx.doi.org/10.5194/acp-23-12651-2023.
Texto completo da fonteElshorbany, Yasin, Jerald R. Ziemke, Sarah Strode, et al. "Tropospheric ozone precursors: global and regional distributions, trends, and variability." Atmospheric Chemistry and Physics 24, no. 21 (2024): 12225–57. http://dx.doi.org/10.5194/acp-24-12225-2024.
Texto completo da fonteRen, Qiangqiang. "NOx and N2O precursors from biomass pyrolysis." Journal of Thermal Analysis and Calorimetry 115, no. 1 (2013): 881–85. http://dx.doi.org/10.1007/s10973-013-3238-5.
Texto completo da fonteJiang, Z., J. R. Worden, D. B. A. Jones, J. T. Lin, W. W. Verstraeten, and D. K. Henze. "Constraints on Asian ozone using Aura TES, OMI and Terra MOPITT." Atmospheric Chemistry and Physics 15, no. 1 (2015): 99–112. http://dx.doi.org/10.5194/acp-15-99-2015.
Texto completo da fonteWu, Luolin, Jian Hang, Xuemei Wang, Min Shao, and Cheng Gong. "APFoam 1.0: integrated computational fluid dynamics simulation of O<sub>3</sub>–NO<sub><i>x</i></sub>–volatile organic compound chemistry and pollutant dispersion in a typical street canyon." Geoscientific Model Development 14, no. 7 (2021): 4655–81. http://dx.doi.org/10.5194/gmd-14-4655-2021.
Texto completo da fonteLei, H., and J. X. L. Wang. "Sensitivities of NO<sub>x</sub> transformation and the effects on surface ozone and nitrate." Atmospheric Chemistry and Physics 14, no. 3 (2014): 1385–96. http://dx.doi.org/10.5194/acp-14-1385-2014.
Texto completo da fonteFlowerday, Callum E., Ryan Thalman, and Jaron C. Hansen. "Local and Regional Contributions to Tropospheric Ozone Concentrations." Atmosphere 14, no. 8 (2023): 1262. http://dx.doi.org/10.3390/atmos14081262.
Texto completo da fonteQian, Yuanyuan, Dan Wang, Zhiyan Li, et al. "Ground-Based MAX-DOAS Observations of Tropospheric Ozone and Its Precursors for Diagnosing Ozone Formation Sensitivity." Remote Sensing 17, no. 4 (2025): 658. https://doi.org/10.3390/rs17040658.
Texto completo da fonteMarécal, V., E. D. Rivière, G. Held, S. Cautenet, and S. Freitas. "Modelling study of the impact of deep convection on the UTLS air composition – Part I: Analysis of ozone precursors." Atmospheric Chemistry and Physics Discussions 5, no. 5 (2005): 9127–68. http://dx.doi.org/10.5194/acpd-5-9127-2005.
Texto completo da fonteKusumaningtyas, Sheila Dewi Ayu, Kenichi Tonokura, Dodo Gunawan, and Windy Iriana. "Long-term trends of ozone precursors and ozone sensitivity in Jakarta Metropolitan Area: A view from space." E3S Web of Conferences 485 (2024): 06011. http://dx.doi.org/10.1051/e3sconf/202448506011.
Texto completo da fonteSeltzer, K. M., W. Vizuete, and B. H. Henderson. "Evaluation of updated nitric acid chemistry on ozone precursors and radiative effects." Atmospheric Chemistry and Physics 15, no. 10 (2015): 5973–86. http://dx.doi.org/10.5194/acp-15-5973-2015.
Texto completo da fonteIanniello, Antonietta, Roberto Salzano, Rosamaria Salvatori, et al. "Nitrogen Oxides (NOx) in the Arctic Troposphere at Ny-Ålesund (Svalbard Islands): Effects of Anthropogenic Pollution Sources." Atmosphere 12, no. 7 (2021): 901. http://dx.doi.org/10.3390/atmos12070901.
Texto completo da fonteCheng, Xi, Yong Jie Li, Yan Zheng, et al. "Oxygenated organic molecules produced by low-NOx photooxidation of aromatic compounds: contributions to secondary organic aerosol and steric hindrance." Atmospheric Chemistry and Physics 24, no. 4 (2024): 2099–112. http://dx.doi.org/10.5194/acp-24-2099-2024.
Texto completo da fonteLiu, Lei, Xiuying Zhang, Wen Xu, et al. "Temporal characteristics of atmospheric ammonia and nitrogen dioxide over China based on emission data, satellite observations and atmospheric transport modeling since 1980." Atmospheric Chemistry and Physics 17, no. 15 (2017): 9365–78. http://dx.doi.org/10.5194/acp-17-9365-2017.
Texto completo da fonteTan, Zhaofeng, Keding Lu, Meiqing Jiang, et al. "Daytime atmospheric oxidation capacity in four Chinese megacities during the photochemically polluted season: a case study based on box model simulation." Atmospheric Chemistry and Physics 19, no. 6 (2019): 3493–513. http://dx.doi.org/10.5194/acp-19-3493-2019.
Texto completo da fonteXu, Weiqi, Masayuki Takeuchi, Chun Chen, et al. "Estimation of particulate organic nitrates from thermodenuder–aerosol mass spectrometer measurements in the North China Plain." Atmospheric Measurement Techniques 14, no. 5 (2021): 3693–705. http://dx.doi.org/10.5194/amt-14-3693-2021.
Texto completo da fonteMuñoz, Verónica, Fatima Maria Zanon Zotin, and Luz Amparo Palacio. "Copper–aluminum hydrotalcite type precursors for NOx abatement." Catalysis Today 250 (July 2015): 173–79. http://dx.doi.org/10.1016/j.cattod.2014.06.004.
Texto completo da fonteLiu, Tongqiang, Jinghao Zhao, Rumei Li, and Yajun Tian. "Retrieval and Evaluation of NOX Emissions Based on a Machine Learning Model in Shandong." Sustainability 17, no. 13 (2025): 6100. https://doi.org/10.3390/su17136100.
Texto completo da fonteTie, X., G. Brasseur, and Z. Ying. "Impact of model resolution on chemical ozone formation in Mexico City; application of the WRF-Chem model." Atmospheric Chemistry and Physics Discussions 10, no. 4 (2010): 9801–38. http://dx.doi.org/10.5194/acpd-10-9801-2010.
Texto completo da fonteSong, J., W. Lei, N. Bei, et al. "Ozone response to emission changes: a modeling study during the MCMA-2006/MILAGRO campaign." Atmospheric Chemistry and Physics Discussions 9, no. 6 (2009): 23419–63. http://dx.doi.org/10.5194/acpd-9-23419-2009.
Texto completo da fonteSong, J., W. Lei, N. Bei, et al. "Ozone response to emission changes: a modeling study during the MCMA-2006/MILAGRO Campaign." Atmospheric Chemistry and Physics 10, no. 8 (2010): 3827–46. http://dx.doi.org/10.5194/acp-10-3827-2010.
Texto completo da fonteXue, L. K., T. Wang, J. Gao, et al. "Ground-level ozone in four Chinese cities: precursors, regional transport and heterogeneous processes." Atmospheric Chemistry and Physics Discussions 14, no. 14 (2014): 20767–803. http://dx.doi.org/10.5194/acpd-14-20767-2014.
Texto completo da fonteZhang, Kun, Zhiqiang Liu, Xiaojuan Zhang, et al. "Insights into the significant increase in ozone during COVID-19 in a typical urban city of China." Atmospheric Chemistry and Physics 22, no. 7 (2022): 4853–66. http://dx.doi.org/10.5194/acp-22-4853-2022.
Texto completo da fonteItahashi, Syuichi, Keiya Yumimoto, Itsushi Uno, et al. "A 15-year record (2001–2015) of the ratio of nitrate to non-sea-salt sulfate in precipitation over East Asia." Atmospheric Chemistry and Physics 18, no. 4 (2018): 2835–52. http://dx.doi.org/10.5194/acp-18-2835-2018.
Texto completo da fonteKim, Dongjin, Wonbae Jeon, Jaehyeong Park, et al. "A Numerical Analysis of the Changes in O3 Concentration in a Wildfire Plume." Remote Sensing 14, no. 18 (2022): 4549. http://dx.doi.org/10.3390/rs14184549.
Texto completo da fonteLei, H., and J. X. L. Wang. "Sensitivities of NO<sub>x</sub> transformation and the effects on surface ozone and nitrate." Atmospheric Chemistry and Physics Discussions 13, no. 8 (2013): 21961–88. http://dx.doi.org/10.5194/acpd-13-21961-2013.
Texto completo da fonteLei, W., B. de Foy, M. Zavala, R. Volkamer, and L. T. Molina. "Characterizing ozone production in the Mexico City Metropolitan Area: a case study using a chemical transport model." Atmospheric Chemistry and Physics 7, no. 5 (2007): 1347–66. http://dx.doi.org/10.5194/acp-7-1347-2007.
Texto completo da fonteLaFranchi, B. W., G. M. Wolfe, J. A. Thornton, et al. "Closing the peroxy acetyl (PA) radical budget: observations of acyl peroxy nitrates (PAN, PPN, and MPAN) during BEARPEX 2007." Atmospheric Chemistry and Physics Discussions 9, no. 2 (2009): 9879–926. http://dx.doi.org/10.5194/acpd-9-9879-2009.
Texto completo da fonteMurphy, J. G., D. A. Day, P. A. Cleary, et al. "The weekend effect within and downwind of Sacramento: Part 2. Observational evidence for chemical and dynamical contributions." Atmospheric Chemistry and Physics Discussions 6, no. 6 (2006): 11971–2019. http://dx.doi.org/10.5194/acpd-6-11971-2006.
Texto completo da fonteHuang, Yaoxian, Shiliang Wu, Louisa J. Kramer, Detlev Helmig, and Richard E. Honrath. "Surface ozone and its precursors at Summit, Greenland: comparison between observations and model simulations." Atmospheric Chemistry and Physics 17, no. 23 (2017): 14661–74. http://dx.doi.org/10.5194/acp-17-14661-2017.
Texto completo da fonteLiu, Qi Dong, Su Ping Cui, Hong Xia Guo, Ya Li Wang, and Yun Feng Zhang. "Preparation and Characterization of MnOX-CeO2/TiO2 Catalytic Material for SCR of NOX with NH3 at Low Temperature." Materials Science Forum 743-744 (January 2013): 198–203. http://dx.doi.org/10.4028/www.scientific.net/msf.743-744.198.
Texto completo da fonteXue, L. K., T. Wang, J. Gao, et al. "Ground-level ozone in four Chinese cities: precursors, regional transport and heterogeneous processes." Atmospheric Chemistry and Physics 14, no. 23 (2014): 13175–88. http://dx.doi.org/10.5194/acp-14-13175-2014.
Texto completo da fonteChang, C. C., M. Shao, C. C. K. Chou, et al. "Biogenic isoprene and implications for oxidant levels in Beijing during the 2008 Olympic Games." Atmospheric Chemistry and Physics Discussions 13, no. 10 (2013): 25939–67. http://dx.doi.org/10.5194/acpd-13-25939-2013.
Texto completo da fontevon Schneidemesser, E., M. Vieno, and P. S. Monks. "The changing oxidizing environment in London – trends in ozone precursors and their contribution to ozone production." Atmospheric Chemistry and Physics Discussions 14, no. 2 (2014): 1287–316. http://dx.doi.org/10.5194/acpd-14-1287-2014.
Texto completo da fonteYang, Laura Hyesung, Daniel J. Jacob, Ruijun Dang, et al. "Interpreting Geostationary Environment Monitoring Spectrometer (GEMS) geostationary satellite observations of the diurnal variation in nitrogen dioxide (NO2) over East Asia." Atmospheric Chemistry and Physics 24, no. 12 (2024): 7027–39. http://dx.doi.org/10.5194/acp-24-7027-2024.
Texto completo da fonteDoherty, R. M., D. S. Stevenson, W. J. Collins, and M. G. Sanderson. "Influence of convective transport on tropospheric ozone and its precursors in a chemistry-climate model." Atmospheric Chemistry and Physics Discussions 5, no. 3 (2005): 3747–71. http://dx.doi.org/10.5194/acpd-5-3747-2005.
Texto completo da fonte