Siga este link para ver outros tipos de publicações sobre o tema: Nonorientable Surfaces.

Artigos de revistas sobre o tema "Nonorientable Surfaces"

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Nonorientable Surfaces".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.

1

Bujalance, J. A., e B. Estrada. "q-hyperelliptic compact nonorientable Klein surfaces without boundary". International Journal of Mathematics and Mathematical Sciences 31, n.º 4 (2002): 215–27. http://dx.doi.org/10.1155/s0161171202109173.

Texto completo da fonte
Resumo:
LetXbe a nonorientable Klein surface (KS in short), that is a compact nonorientable surface with a dianalytic structure defined on it. A Klein surfaceXis said to beq-hyperellipticif and only if there exists an involutionΦonX(a dianalytic homeomorphism of order two) such that the quotientX/〈Φ〉has algebraic genusq.q-hyperelliptic nonorientable KSs without boundary (nonorientable Riemann surfaces) were characterized by means of non-Euclidean crystallographic groups. In this paper, using that characterization, we determine bounds for the order of the automorphism group of a nonorientableq-hyperelliptic Klein surfaceXsuch thatX/〈Φ〉has no boundary and prove that the bounds are attained. Besides, we obtain the dimension of the Teichmüller space associated to this type of surfaces.
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

NAKAZAWA, NAOHITO. "ON FIELD THEORIES OF LOOPS". Modern Physics Letters A 10, n.º 29 (21 de setembro de 1995): 2175–84. http://dx.doi.org/10.1142/s0217732395002337.

Texto completo da fonte
Resumo:
We apply stochastic quantization method to real symmetric matrix models for the second quantization of nonorientable loops in both discretized and continuum levels. The stochastic process defined by the Langevin equation in loop space describes the time evolution of the nonorientable loops defined on nonorientable 2-D surfaces. The corresponding Fokker-Planck Hamiltonian deduces a nonorientable string field theory at the continuum limit.
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Danthony, Claude, e Arnaldo Nogueira. "Measured foliations on nonorientable surfaces". Annales scientifiques de l'École normale supérieure 23, n.º 3 (1990): 469–94. http://dx.doi.org/10.24033/asens.1608.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Stukow, Michał. "Dehn twists on nonorientable surfaces". Fundamenta Mathematicae 189, n.º 2 (2006): 117–47. http://dx.doi.org/10.4064/fm189-2-3.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Hartsfield, Nora, e Gerhard Ringel. "Minimal quadrangulations of nonorientable surfaces". Journal of Combinatorial Theory, Series A 50, n.º 2 (março de 1989): 186–95. http://dx.doi.org/10.1016/0097-3165(89)90014-9.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

YURTTAŞ, Saadet Öykü, e Mehmetcik PAMUK. "Integral laminations on nonorientable surfaces". TURKISH JOURNAL OF MATHEMATICS 42 (2018): 69–82. http://dx.doi.org/10.3906/mat-1608-76.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Levine, Adam, Daniel Ruberman e Sašo Strle. "Nonorientable surfaces in homology cobordisms". Geometry & Topology 19, n.º 1 (27 de fevereiro de 2015): 439–94. http://dx.doi.org/10.2140/gt.2015.19.439.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Barza, Ilie, e Dorin Ghisa. "Vector fields on nonorientable surfaces". International Journal of Mathematics and Mathematical Sciences 2003, n.º 3 (2003): 133–52. http://dx.doi.org/10.1155/s0161171203204038.

Texto completo da fonte
Resumo:
A one-to-one correspondence is established between the germs of functions and tangent vectors on a NOSXand the bi-germs of functions, respectively, elementary fields of tangent vectors (EFTV) on the orientable double cover ofX. Some representation theorems for the algebra of germs of functions, the tangent space at an arbitrary point ofX, and the space of vector fields onXare proved by using a symmetrisation process. An example related to the normal derivative on the border of the Möbius strip supports the nontriviality of the concepts introduced in this paper.
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Friesen, Tyler, e Vassily Olegovich Manturov. "Checkerboard embeddings of *-graphs into nonorientable surfaces". Journal of Knot Theory and Its Ramifications 23, n.º 07 (junho de 2014): 1460004. http://dx.doi.org/10.1142/s0218216514600049.

Texto completo da fonte
Resumo:
This paper considers *-graphs in which all vertices have degree 4 or 6, and studies the question of calculating the genus of nonorientable surfaces into which such graphs may be embedded. In a previous paper [Embeddings of *-graphs into 2-surfaces, preprint (2012), arXiv:1212.5646] by the authors, the problem of calculating whether a given *-graph in which all vertices have degree 4 or 6 admits a ℤ2-homologically trivial embedding into a given orientable surface was shown to be equivalent to a problem on matrices. Here we extend those results to nonorientable surfaces. The embeddability condition that we obtain yields quadratic-time algorithms to determine whether a *-graph with all vertices of degree 4 or 6 admits a ℤ2-homologically trivial embedding into the projective plane or into the Klein bottle.
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

L�pez, Francisco J., e Francisco Mart�n. "Complete nonorientable minimal surfaces and symmetries". Duke Mathematical Journal 79, n.º 3 (setembro de 1995): 667–86. http://dx.doi.org/10.1215/s0012-7094-95-07917-4.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
11

Lu, Wentao T., e F. Y. Wu. "Close-packed dimers on nonorientable surfaces". Physics Letters A 293, n.º 5-6 (fevereiro de 2002): 235–46. http://dx.doi.org/10.1016/s0375-9601(02)00019-1.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
12

Ross, Marty. "Complete nonorientable minimal surfaces in R3". Commentarii Mathematici Helvetici 67, n.º 1 (dezembro de 1992): 64–76. http://dx.doi.org/10.1007/bf02566489.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
13

Archdeacon, Dan, e Phil Huneke. "A Kuratowski theorem for nonorientable surfaces". Journal of Combinatorial Theory, Series B 46, n.º 2 (abril de 1989): 173–231. http://dx.doi.org/10.1016/0095-8956(89)90043-9.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
14

Ho, Nan-Kuo, e Chiu-Chu Melissa Liu. "Yang-Mills connections on nonorientable surfaces". Communications in Analysis and Geometry 16, n.º 3 (2008): 617–79. http://dx.doi.org/10.4310/cag.2008.v16.n3.a6.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
15

Atalan, F., e E. Medetogullari. "The Birman-Hilden property of covering spaces of nonorientable surfaces". Ukrains’kyi Matematychnyi Zhurnal 72, n.º 3 (28 de março de 2020): 307–15. http://dx.doi.org/10.37863/umzh.v72i3.6044.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
16

Parlak, Anna, e Michał Stukow. "Roots of Dehn twists on nonorientable surfaces". Journal of Knot Theory and Its Ramifications 28, n.º 12 (outubro de 2019): 1950077. http://dx.doi.org/10.1142/s0218216519500779.

Texto completo da fonte
Resumo:
Margalit and Schleimer observed that Dehn twists on orientable surfaces have nontrivial roots. We investigate the problem of roots of a Dehn twist [Formula: see text] about a nonseparating circle [Formula: see text] in the mapping class group [Formula: see text] of a nonorientable surface [Formula: see text] of genus [Formula: see text]. We explore the existence of roots and, following the work of McCullough, Rajeevsarathy and Monden, give a simple arithmetic description of their conjugacy classes. We also study roots of maximal degree and prove that if we fix an odd integer [Formula: see text], then for each sufficiently large [Formula: see text], [Formula: see text] has a root of degree [Formula: see text] in [Formula: see text]. Moreover, for any possible degree [Formula: see text], we provide explicit expressions for a particular type of roots of Dehn twists about nonseparating circles in [Formula: see text].
Estilos ABNT, Harvard, Vancouver, APA, etc.
17

Atalan, Ferihe, e Mustafa Korkmaz. "Automorphisms of curve complexes on nonorientable surfaces". Groups, Geometry, and Dynamics 8, n.º 1 (2014): 39–68. http://dx.doi.org/10.4171/ggd/216.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
18

Dai, Bo, Chung-I. Ho e Tian-Jun Li. "Nonorientable Lagrangian surfaces in rational 4–manifolds". Algebraic & Geometric Topology 19, n.º 6 (20 de outubro de 2019): 2837–54. http://dx.doi.org/10.2140/agt.2019.19.2837.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
19

Ginés Espín Buendía, José, Daniel Peralta-salas e Gabriel Soler López. "Existence of minimal flows on nonorientable surfaces". Discrete & Continuous Dynamical Systems - A 37, n.º 8 (2017): 4191–211. http://dx.doi.org/10.3934/dcds.2017178.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
20

Ishihara, Toru. "Complete Nonorientable Minimal Surfaces in R 3". Transactions of the American Mathematical Society 333, n.º 2 (outubro de 1992): 889. http://dx.doi.org/10.2307/2154069.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
21

Bujalance, J. A. "Hyperelliptic compact nonorientable Klein surfaces without boundary". Kodai Mathematical Journal 12, n.º 1 (1989): 1–8. http://dx.doi.org/10.2996/kmj/1138038984.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
22

Machon, T., e G. P. Alexander. "Knots and nonorientable surfaces in chiral nematics". Proceedings of the National Academy of Sciences 110, n.º 35 (12 de agosto de 2013): 14174–79. http://dx.doi.org/10.1073/pnas.1308225110.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
23

Karimipour, V., e A. Mostafazadeh. "Lattice topological field theory on nonorientable surfaces". Journal of Mathematical Physics 38, n.º 1 (janeiro de 1997): 49–66. http://dx.doi.org/10.1063/1.531830.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
24

de Oliveira, M. Elisa G. G. "Some new examples of nonorientable minimal surfaces". Proceedings of the American Mathematical Society 98, n.º 4 (1 de abril de 1986): 629. http://dx.doi.org/10.1090/s0002-9939-1986-0861765-0.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
25

Gabai, David, e William H. Kazez. "The classification of maps of nonorientable surfaces". Mathematische Annalen 281, n.º 4 (dezembro de 1988): 687–702. http://dx.doi.org/10.1007/bf01456845.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
26

ATALAN, FERIHE. "OUTER AUTOMORPHISMS OF MAPPING CLASS GROUPS OF NONORIENTABLE SURFACES". International Journal of Algebra and Computation 20, n.º 03 (maio de 2010): 437–56. http://dx.doi.org/10.1142/s0218196710005716.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
27

OZAWA, MAKOTO. "ESSENTIAL STATE SURFACES FOR KNOTS AND LINKS". Journal of the Australian Mathematical Society 91, n.º 3 (dezembro de 2011): 391–404. http://dx.doi.org/10.1017/s1446788712000055.

Texto completo da fonte
Resumo:
AbstractWe study a canonical spanning surface obtained from a knot or link diagram, depending on a given Kauffman state. We give a sufficient condition for the surface to be essential. By using the essential surface, we can deduce the triviality and splittability of a knot or link from its diagrams. This has been done on the extended knot or link class that includes all semiadequate, homogeneous knots and links, and most algebraic knots and links. In order to prove the main theorem, we extend Gabai’s Murasugi sum theorem to the case of nonorientable spanning surfaces.
Estilos ABNT, Harvard, Vancouver, APA, etc.
28

Gromadzki, Grzegorz. "Supersoluble Groups of Automorphisms of Nonorientable Riemann Surfaces". Bulletin of the London Mathematical Society 22, n.º 6 (novembro de 1990): 561–68. http://dx.doi.org/10.1112/blms/22.6.561.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
29

Solov’eva, F. I. "Tilings of nonorientable surfaces by Steiner triple systems". Problems of Information Transmission 43, n.º 3 (setembro de 2007): 213–24. http://dx.doi.org/10.1134/s0032946007030040.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
30

Li, Youlin, e Burak Ozbagci. "Fillings of unit cotangent bundles of nonorientable surfaces". Bulletin of the London Mathematical Society 50, n.º 1 (26 de outubro de 2017): 7–16. http://dx.doi.org/10.1112/blms.12104.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
31

Lu, Wentao T., e F. Y. Wu. "Erratum to: “Close-packed dimers on nonorientable surfaces”". Physics Letters A 298, n.º 4 (junho de 2002): 293. http://dx.doi.org/10.1016/s0375-9601(02)00518-2.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
32

Tzeng, W. J., e F. Y. Wu. "Spanning trees on hypercubic lattices and nonorientable surfaces". Applied Mathematics Letters 13, n.º 7 (outubro de 2000): 19–25. http://dx.doi.org/10.1016/s0893-9659(00)00071-9.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
33

Bernatzki, Felicia. "The Plateau-Douglas problem for nonorientable minimal surfaces". manuscripta mathematica 79, n.º 1 (dezembro de 1993): 73–80. http://dx.doi.org/10.1007/bf02568329.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
34

Ho, Nan-Kuo, e Chiu-Chu Liu. "Yang-Mills connections on orientable and nonorientable surfaces". Memoirs of the American Mathematical Society 202, n.º 948 (2009): 0. http://dx.doi.org/10.1090/s0065-9266-09-00564-x.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
35

Meeks, III, William H. "Regularity of the Albanese map for nonorientable surfaces". Journal of Differential Geometry 29, n.º 2 (1989): 345–52. http://dx.doi.org/10.4310/jdg/1214442878.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
36

Ho, Nan-Kuo, Chiu-Chu Melissa Liu e Daniel Ramras. "Orientability in Yang–Mills theory over nonorientable surfaces". Communications in Analysis and Geometry 17, n.º 5 (2009): 903–53. http://dx.doi.org/10.4310/cag.2009.v17.n5.a3.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
37

Alarcón, Antonio, e Francisco J. López. "Approximation theory for nonorientable minimal surfaces and applications". Geometry & Topology 19, n.º 2 (10 de abril de 2015): 1015–62. http://dx.doi.org/10.2140/gt.2015.19.1015.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
38

Aranson, S. Kh, E. V. Zhuzhoma e I. A. Tel'nykh. "Transitive and supertransitive flows on closed nonorientable surfaces". Mathematical Notes 63, n.º 4 (abril de 1998): 549–52. http://dx.doi.org/10.1007/bf02311259.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
39

Nicholls, Sarah Ruth, Nancy Scherich e Julia Shneidman. "Large 1-systems of curves in nonorientable surfaces". Involve, a Journal of Mathematics 16, n.º 1 (14 de abril de 2023): 127–39. http://dx.doi.org/10.2140/involve.2023.16.127.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
40

ALI, FATEMA, e FERIHE ATALAN. "CONNECTEDNESS OF THE CUT SYSTEM COMPLEX ON NONORIENTABLE SURFACES". Kragujevac Journal of Mathematics 46, n.º 1 (fevereiro de 2022): 21–28. http://dx.doi.org/10.46793/kgjmat2201.021a.

Texto completo da fonte
Resumo:
Let N be a compact, connected, nonorientable surface of genus g with n boundary components. In this note, we show that the cut system complex of N is connected for g < 4 and disconnected for g ≥ 4. We then define a related complex and show that it is connected for g ≥ 4.
Estilos ABNT, Harvard, Vancouver, APA, etc.
41

Eudave-Muñoz, Mario, e José Frías. "The Neuwirth Conjecture for a family of satellite knots". Journal of Knot Theory and Its Ramifications 28, n.º 02 (fevereiro de 2019): 1950017. http://dx.doi.org/10.1142/s0218216519500172.

Texto completo da fonte
Resumo:
Let [Formula: see text] be a nontrivial knot in [Formula: see text]. It was conjectured that there exists a Neuwirth surface for [Formula: see text]. That is, a closed surface in [Formula: see text] containing the knot [Formula: see text] as a nonseparating curve and such that every compressing disk for the surface intersects the knot in at least two points. We provide explicit constructions of Neuwirth surfaces for a family of satellite knots, which do not depend on the existence of nonorientable algebraically incompressible and [Formula: see text]-incompressible spanning surfaces for these knots.
Estilos ABNT, Harvard, Vancouver, APA, etc.
42

KORKMAZ, MUSTAFA. "First homology group of mapping class groups of nonorientable surfaces". Mathematical Proceedings of the Cambridge Philosophical Society 123, n.º 3 (maio de 1998): 487–99. http://dx.doi.org/10.1017/s0305004197002454.

Texto completo da fonte
Resumo:
Recall that the first homology group H1(G) of a group G is the derived quotient G/[G, G]. The first homology groups of the mapping class groups of closed orientable surfaces are well known. Let F be a closed orientable surface of genus g. Recall that the extended mapping class group [Mscr ]*F of the surface F is the group of the isotopy classes of self-homeomorphisms of F. The mapping class group [Mscr ]F of F is the subgroup of [Mscr ]*F consisting of the isotopy classes of orientation-preserving self-homeomorphisms of F. It is well known that [Mscr ]F is trivial if F is a sphere. Hence the first homology group of the mapping class group of a sphere is trivial. If the genus of F is at least three, then H1([Mscr ]F) is again trivial. This result is due to Powell [P]. The group H1([Mscr ]F) is Z10 if the genus of F is two, proved by Mumford [Mu], and Z12 if F is a torus. When a problem about orientable surfaces is solved, it is natural to ask the corresponding problem for nonorientable surfaces. This is our motivation for the present paper.
Estilos ABNT, Harvard, Vancouver, APA, etc.
43

Petrenjuk, V. I., e D. A. Petrenjuk. "About Structure of Graph Obstructions for Klein Surface with 9 Vertices". Cybernetics and Computer Technologies, n.º 4 (31 de dezembro de 2020): 65–86. http://dx.doi.org/10.34229/2707-451x.20.4.5.

Texto completo da fonte
Resumo:
The structure of the 9 vertex obstructive graphs for the nonorientable surface of the genus 2 is established by the method of j-transformations of the graphs. The problem of establishing the structural properties of 9 vertex obstruction graphs for the surface of the undirected genus 2 by the method of j-transformation of graphs is considered. The article has an introduction and 5 sections. The introduction contains the main definitions, which are illustrated, to some extent, in Section 1, which provides several statements about their properties. Sections 2 – 4 investigate the structural properties of 9 vertex obstruction graphs for an undirected surface by presenting as a j-image of several graphs homeomorphic to one of the Kuratovsky graphs and at least one planar or projective-planar graph. Section 5 contains a new version of the proof of the statement about the peculiarities of the minimal embeddings of finite graphs in nonorientable surfaces, namely, that, in contrast to oriented surfaces, cell boundaries do not contain repeated edges. Also in section 5 the other properties peculiar to embeddings of graphs to non-oriented surfaces and the main result are given. The main result is Theorem 1. Each obstruction graph H for a non-oriented surface N2 of genus 2 satisfies the following. 1. An arbitrary edge u,u = (a,b) is placed on the Mebius strip by some minimal embedding of the graph H in N3 and there exists a locally projective-planar subgraph K of the graph H \ u which satisfies the condition: (tK({a,b},N3)=1)˄(tK\u({a,b},N2)=2), where tK({a,b},N) is the number of reachability of the set {a,b} on the nonorientable surface N; 2. There exists the smallest inclusion of many different subgraphs Ki of a 2-connected graph H homeomorphic to the graph K+e, where K is a locally planar subgraph of the graph H (at least K+e is homemorphic to K5 or K3,3), which covers the set of edges of the graph H. Keywords: graph, Klein surface, graph structure, graph obstruction, non-oriented surface, Möbius strip.
Estilos ABNT, Harvard, Vancouver, APA, etc.
44

Ho, Nan-Kuo, e Chiu-Chu Melissa Liu. "On the Connectedness of Moduli Spaces of Flat Connections over Compact Surfaces". Canadian Journal of Mathematics 56, n.º 6 (1 de dezembro de 2004): 1228–36. http://dx.doi.org/10.4153/cjm-2004-053-3.

Texto completo da fonte
Resumo:
AbstractWe study the connectedness of the moduli space of gauge equivalence classes of flat G-connections on a compact orientable surface or a compact nonorientable surface for a class of compact connected Lie groups. This class includes all the compact, connected, simply connected Lie groups, and some non-semisimple classical groups.
Estilos ABNT, Harvard, Vancouver, APA, etc.
45

Khorrami, M., e M. Alimohammadi. "Observables of the Generalized 2D Yang–Mills Theories on Arbitrary Surfaces: A Path Integral Approach". Modern Physics Letters A 12, n.º 30 (28 de setembro de 1997): 2265–70. http://dx.doi.org/10.1142/s0217732397002338.

Texto completo da fonte
Resumo:
Using the path integral method, we calculate the partition function and the generating functional (of the field strengths) of the generalized 2-D Yang–Mills theories in the Schwinger–Fock gauge. Our calculation is done for arbitrary 2-D orientable, and also nonorientable surfaces.
Estilos ABNT, Harvard, Vancouver, APA, etc.
46

Gromadzki, G. "On soluble groups of automorphisms of nonorientable Klein surfaces". Fundamenta Mathematicae 141, n.º 3 (1992): 215–27. http://dx.doi.org/10.4064/fm-141-3-215-227.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
47

Ishihara, Tōru. "Harmonic maps of nonorientable surfaces to four-dimensional manifolds". Tohoku Mathematical Journal 45, n.º 1 (1993): 1–12. http://dx.doi.org/10.2748/tmj/1178225951.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
48

Fujimori, Shoichi, e Francisco J. López. "Nonorientable maximal surfaces in the Lorentz-Minkowski 3-space". Tohoku Mathematical Journal 62, n.º 3 (2010): 311–28. http://dx.doi.org/10.2748/tmj/1287148614.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
49

Davies, James, e Florian Pfender. "Edge‐maximal graphs on orientable and some nonorientable surfaces". Journal of Graph Theory 98, n.º 3 (6 de julho de 2021): 405–25. http://dx.doi.org/10.1002/jgt.22705.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
50

Martín, Francisco, e Francisco J. Lopez. "Complete nonorientable minimal surfaces with the highest symmetry group". American Journal of Mathematics 119, n.º 1 (1997): 55–81. http://dx.doi.org/10.1353/ajm.1997.0004.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Oferecemos descontos em todos os planos premium para autores cujas obras estão incluídas em seleções literárias temáticas. Contate-nos para obter um código promocional único!

Vá para a bibliografia