Livros sobre o tema "Nonlocal equations in time"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores livros para estudos sobre o assunto "Nonlocal equations in time".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os livros das mais diversas áreas científicas e compile uma bibliografia correta.
E, Zorumski William, e Langley Research Center, eds. Periodic time-domain nonlocal nonreflecting boundary conditions for duct acoustics. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1996.
Encontre o texto completo da fonteE, Zorumski William, e Langley Research Center, eds. Periodic time-domain nonlocal nonreflecting boundary conditions for duct acoustics. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1996.
Encontre o texto completo da fonteE, Zorumski William, e Langley Research Center, eds. Periodic time-domain nonlocal nonreflecting boundary conditions for duct acoustics. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1996.
Encontre o texto completo da fonteAndreu-Vaillo, Fuensanta. Nonlocal diffusion problems. Providence, R.I: American Mathematical Society, 2010.
Encontre o texto completo da fonteShishmarev, I. A. (Ilʹi͡a︡ Andreevich)., ed. Nonlinear nonlocal equations in the theory of waves. Providence, R.I: American Mathematical Society, 1994.
Encontre o texto completo da fonteNaumkin, P. I. Nonlinear nonlocal equations in the theory of waves. Providence, R.I: American Mathematical Society, 1994.
Encontre o texto completo da fonteRoquejoffre, Jean-Michel. The Dynamics of Front Propagation in Nonlocal Reaction–Diffusion Equations. Cham: Springer Nature Switzerland, 2024. https://doi.org/10.1007/978-3-031-77772-1.
Texto completo da fonte1958-, Biler Piotr, Karch Grzegorz e Nadzieja Tadeusz 1951-, eds. Nonlocal elliptic and parabolic problems: Proceedings of the conference held at Będlewo , September 12-15, 2003. Warszawa: Institute of Mathematics, Polish Academy of Sciences, 2004.
Encontre o texto completo da fonteKamenskiĭ, G. A. Extrema of nonlocal functionals and boundary value problems for functional differential equations. Hauppauge, N.Y: Nova Science Publishers, 2007.
Encontre o texto completo da fonteKubica, Adam, Katarzyna Ryszewska e Masahiro Yamamoto. Time-Fractional Differential Equations. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-9066-5.
Texto completo da fonteE, Zorumski W., Watson Willie R e Langley Research Center, eds. Solution of the three-dimensional Helmholtz equation with nonlocal boundary conditions. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1995.
Encontre o texto completo da fonteE, Zorumski W., Watson Willie R e Langley Research Center, eds. Solution of the three-dimensional Helmholtz equation with nonlocal boundary conditions. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1995.
Encontre o texto completo da fonteGeorgiev, Svetlin G. Integral Equations on Time Scales. Paris: Atlantis Press, 2016. http://dx.doi.org/10.2991/978-94-6239-228-1.
Texto completo da fonteBohner, Martin, e Allan Peterson. Dynamic Equations on Time Scales. Boston, MA: Birkhäuser Boston, 2001. http://dx.doi.org/10.1007/978-1-4612-0201-1.
Texto completo da fonteWang, Gengsheng, Lijuan Wang, Yashan Xu e Yubiao Zhang. Time Optimal Control of Evolution Equations. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-95363-2.
Texto completo da fonteGeorgiev, Svetlin G. Functional Dynamic Equations on Time Scales. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-15420-2.
Texto completo da fonte1953-, Rao S. M., ed. Time domain electromagnetics. San Diego: Academic Press, 1999.
Encontre o texto completo da fontePötter, Ulrich. Models for interdependent decisions over time. Colchester: European Science Foundation, Scientific Network on Household Panel Studies, University of Essex, 1992.
Encontre o texto completo da fonteCenter, Langley Research, e Institute for Computer Applications in Science and Engineering., eds. Spectral methods in time for parabolic problems. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1985.
Encontre o texto completo da fonteBertil, Gustafsson. Time dependent problems and difference methods. New York: Wiley, 1995.
Encontre o texto completo da fonteFarina, Alberto, e Jean-Claude Saut, eds. Stationary and Time Dependent Gross-Pitaevskii Equations. Providence, Rhode Island: American Mathematical Society, 2008. http://dx.doi.org/10.1090/conm/473.
Texto completo da fonteBohner, Martin, e Allan Peterson, eds. Advances in Dynamic Equations on Time Scales. Boston, MA: Birkhäuser Boston, 2003. http://dx.doi.org/10.1007/978-0-8176-8230-9.
Texto completo da fonteAndersson, Ulf. Time-domain methods for the Maxwell equations. Stockholm: Tekniska ho gsk., 2001.
Encontre o texto completo da fonte1966-, Bohner Martin, e Peterson Allan C, eds. Advances in dynamic equations on time scales. Boston: Birkhäuser, 2003.
Encontre o texto completo da fontename, No. Advances in dynamic equations on time scales. Boston, MA: Birkhuser, 2003.
Encontre o texto completo da fontePyke, Randall Mitchell. Time periodic solutions of nonlinear wave equations. Toronto: [s.n.], 1996.
Encontre o texto completo da fonteAgarwal, Ravi P., Bipan Hazarika e Sanket Tikare. Dynamic Equations on Time Scales and Applications. Boca Raton: Chapman and Hall/CRC, 2024. http://dx.doi.org/10.1201/9781003467908.
Texto completo da fonteGustafsson, Bertil. Time dependent problems and difference methods. New York: Wiley, 1995.
Encontre o texto completo da fonteMartynyuk, Anatoly A. Stability Theory for Dynamic Equations on Time Scales. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-42213-8.
Texto completo da fonteGal, Ciprian G., e Mahamadi Warma. Fractional-in-Time Semilinear Parabolic Equations and Applications. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-45043-4.
Texto completo da fonteKirsch, Andreas, e Frank Hettlich. The Mathematical Theory of Time-Harmonic Maxwell's Equations. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-11086-8.
Texto completo da fonteSayas, Francisco-Javier. Retarded Potentials and Time Domain Boundary Integral Equations. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-26645-9.
Texto completo da fonteS, Liou M., Povinelli Louis A e United States. National Aeronautics and Space Administration., eds. Multigrid time-accurate integration of Navier-Stokes equations. [Washington, DC]: National Aeronautics and Space Administration, 1993.
Encontre o texto completo da fonteE, Turkel, e United States. National Aeronautics and Space Administration, eds. Pseudo-time algorithms for the Navier-Stokes equations. Hampton, VA: Institute for Computer Applications in Science and Engineering, NASA Langley Research Center, 1986.
Encontre o texto completo da fonteE, Turkel, e United States. National Aeronautics and Space Administration, eds. Pseudo-time algorithms for the Navier-Stokes equations. Hampton, VA: Institute for Computer Applications in Science and Engineering, NASA Langley Research Center, 1986.
Encontre o texto completo da fonteS, Liou M., Povinelli Louis A e United States. National Aeronautics and Space Administration., eds. Multigrid time-accurate integration of Navier-Stokes equations. [Washington, DC]: National Aeronautics and Space Administration, 1993.
Encontre o texto completo da fonteS, Liou M., Povinelli Louis A e United States. National Aeronautics and Space Administration., eds. Multigrid time-accurate integration of Navier-Stokes equations. [Washington, DC]: National Aeronautics and Space Administration, 1993.
Encontre o texto completo da fonteSwanson, R. Charles. Pseudo-time algorithms for the Navier-Stokes equations. Hampton, Va: ICASE, 1986.
Encontre o texto completo da fontePeriodic time-domain nonlocal nonreflecting boundary conditions for duct acoustics. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1996.
Encontre o texto completo da fonteMorawetz, Klaus. Nonlocal Collision Integral. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198797241.003.0013.
Texto completo da fonteMorawetz, Klaus. Nonequilibrium Quantum Hydrodynamics. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198797241.003.0015.
Texto completo da fonteMorawetz, Klaus. Properties of Non-Instant and Nonlocal Corrections. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198797241.003.0014.
Texto completo da fonteMorawetz, Klaus. Simulations of Heavy-Ion Reactions with Nonlocal Collisions. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198797241.003.0023.
Texto completo da fonteHoring, Norman J. Morgenstern. Interacting Electron–Hole–Phonon System. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198791942.003.0011.
Texto completo da fonteNonlocal diffusion problems. Providence, R.I: American Mathematical Society, 2010.
Encontre o texto completo da fonteNonlocal and abstract parabolic equations and their applications. Warszawa: Institute of Mathematics, Polish Academy of Sciences, 2009.
Encontre o texto completo da fonteDelay Differential Evolutions Subjected to Nonlocal Initial Conditions. Taylor & Francis Group, 2018.
Encontre o texto completo da fonteNecula, Mihai, Ioan I. Vrabie, Monica-Dana Burlică e Daniela Roșu. Delay Differential Evolutions Subjected to Nonlocal Initial Conditions. Taylor & Francis Group, 2018.
Encontre o texto completo da fonteNecula, Mihai, Ioan I. Vrabie, Monica-Dana Burlică e Daniela Roșu. Delay Differential Evolutions Subjected to Nonlocal Initial Conditions. Taylor & Francis Group, 2018.
Encontre o texto completo da fonteNecula, Mihai, Ioan I. Vrabie, Monica-Dana Burlică e Daniela Roșu. Delay Differential Evolutions Subjected to Nonlocal Initial Conditions. Taylor & Francis Group, 2016.
Encontre o texto completo da fonte