Artigos de revistas sobre o tema "Nonlinear thermomechanical properties"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Nonlinear thermomechanical properties".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
RAHMAN, S. M. MUJIBUR, e SAMIRA SALEK. "THERMOMECHANICAL PROPERTIES OF CERTAIN ELEMENTAL CRYSTALS". International Journal of Modern Physics B 06, n.º 18 (20 de setembro de 1992): 3069–77. http://dx.doi.org/10.1142/s0217979292002371.
Texto completo da fonteKARAOGLU, B., e S. M. MUJIBUR RAHMAN. "THERMOMECHANICAL PROPERTIES OF 3d TRANSITION METALS". International Journal of Modern Physics B 08, n.º 11n12 (30 de maio de 1994): 1639–54. http://dx.doi.org/10.1142/s0217979294000701.
Texto completo da fonteZhang, Zhong, Wenjie Zhao, Ying Sun, Zhenyuan Gu, Wangping Qian e Hai Gong. "Thermoelastic Behaviors of Temperature-Dependent Multilayer Arches under Thermomechanical Loadings". Buildings 13, n.º 10 (16 de outubro de 2023): 2607. http://dx.doi.org/10.3390/buildings13102607.
Texto completo da fonteZhang, Tao, Qiang Li, Jia-Jia Mao e Chunqing Zha. "Nonlinear Thermomechanical Low-Velocity Impact Behaviors of Geometrically Imperfect GRC Beams". Materials 17, n.º 24 (11 de dezembro de 2024): 6062. https://doi.org/10.3390/ma17246062.
Texto completo da fonteLIM, SHEAU HOOI, KAIYANG ZENG e CHAOBIN HE. "PREPARATION, MORPHOLOGY AND MECHANICAL PROPERTIES OF EPOXY NANOCOMPOSITES WITH ALUMINA FILLERS". International Journal of Modern Physics B 24, n.º 01n02 (20 de janeiro de 2010): 136–47. http://dx.doi.org/10.1142/s021797921006406x.
Texto completo da fonteHadi, Abbas, Hamid Reza Ovesy, Saeed Shakhesi e Jamshid Fazilati. "Large Amplitude Dynamic Analysis of FGM Cylindrical Shells on Nonlinear Elastic Foundation Under Thermomechanical Loads". International Journal of Applied Mechanics 09, n.º 07 (outubro de 2017): 1750105. http://dx.doi.org/10.1142/s1758825117501058.
Texto completo da fonteKhorshidvand, A. R., e M. Jabbari. "Thermomechanical Analysis in FG Rotating Hollow Disk". Applied Mechanics and Materials 110-116 (outubro de 2011): 148–54. http://dx.doi.org/10.4028/www.scientific.net/amm.110-116.148.
Texto completo da fonteDasgupta, A., e S. M. Bhandarkar. "Effective Thermomechanical Behavior of Plain-Weave Fabric-Reinforced Composites Using Homogenization Theory". Journal of Engineering Materials and Technology 116, n.º 1 (1 de janeiro de 1994): 99–105. http://dx.doi.org/10.1115/1.2904262.
Texto completo da fonteTabouret, V., B. Viana e J. Petit. "ZnGa2Se4, a nonlinear material with wide mid infrared transparency and good thermomechanical properties". Optical Materials: X 1 (janeiro de 2019): 100007. http://dx.doi.org/10.1016/j.omx.2019.100007.
Texto completo da fonteChamis, C. C., P. L. N. Murthy, S. N. Singhal e J. J. Lackney. "HITCAN for Actively Cooled Hot-Composite Thermostructural Analysis". Journal of Engineering for Gas Turbines and Power 114, n.º 2 (1 de abril de 1992): 315–20. http://dx.doi.org/10.1115/1.2906589.
Texto completo da fonteShi, Hui Ji, Ya-Xiong Zheng, Ran Guo e Gerard Mesmacque. "Characterization of High Temperature Thermomechanical Fatigue Properties for Particle Reinforced Composites". Key Engineering Materials 297-300 (novembro de 2005): 1495–502. http://dx.doi.org/10.4028/www.scientific.net/kem.297-300.1495.
Texto completo da fonteYavari, B., W. W. Tworzydlo e J. M. Bass. "A Thermomechanical Model to Predict the Temperature Distribution of Steady State Rolling Tires". Tire Science and Technology 21, n.º 3 (1 de julho de 1993): 163–78. http://dx.doi.org/10.2346/1.2139527.
Texto completo da fonteAlshammari, Yousef, Fei Yang e Leandro Bolzoni. "Thermomechanical powder processing of beta-eutectoid bearing near-alpha Ti alloys". International Journal of Modern Physics B 34, n.º 01n03 (20 de dezembro de 2019): 2040030. http://dx.doi.org/10.1142/s0217979220400305.
Texto completo da fonteJAGANNATHAN, N., e R. PALANINATHAN. "THERMOMECHANICAL MODELING OF ELECTRONIC PACKAGES". International Journal of Modeling, Simulation, and Scientific Computing 02, n.º 01 (março de 2011): 45–66. http://dx.doi.org/10.1142/s1793962311000384.
Texto completo da fonteShojaei, Amir, e Guoqiang Li. "Thermomechanical constitutive modelling of shape memory polymer including continuum functional and mechanical damage effects". Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 470, n.º 2170 (8 de outubro de 2014): 20140199. http://dx.doi.org/10.1098/rspa.2014.0199.
Texto completo da fonteKumar, G. Ramesh, S. Gokul Raj, Thenneti Raghavalu, V. Mathivanan, M. Kovendhan, R. Mohan e R. Jayavel. "Effect of pH, thermal, electrical and thermomechanical properties of nonlinear optical l-threonine single crystals". Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 68, n.º 2 (outubro de 2007): 300–304. http://dx.doi.org/10.1016/j.saa.2006.11.033.
Texto completo da fonteMehditabar, Aref, e Gholam H. Rahimi. "Numerical prediction of the elastoplastic response of FG tubes using nonlinear kinematic hardening rule with power-law function model under thermomechanical loadings". Engineering Computations 36, n.º 1 (29 de novembro de 2018): 103–25. http://dx.doi.org/10.1108/ec-02-2018-0102.
Texto completo da fonteEbrahimi, Farzad, e Ali Jafari. "A Higher-Order Thermomechanical Vibration Analysis of Temperature-Dependent FGM Beams with Porosities". Journal of Engineering 2016 (2016): 1–20. http://dx.doi.org/10.1155/2016/9561504.
Texto completo da fonteRomero, Carlos, Fei Yang e Leandro Bolzoni. "Influence of microstructure on the fatigue behavior of blended elemental Ti-6AL-4V alloy post-consolidated by extrusion". International Journal of Modern Physics B 34, n.º 01n03 (11 de novembro de 2019): 2040025. http://dx.doi.org/10.1142/s0217979220400251.
Texto completo da fonteVan Tung, Hoang. "Nonlinear thermomechanical response of pressure-loaded doubly curved functionally graded material sandwich panels in thermal environments including tangential edge constraints". Journal of Sandwich Structures & Materials 20, n.º 8 (2 de janeiro de 2017): 974–1008. http://dx.doi.org/10.1177/1099636216684312.
Texto completo da fonteTrang, Le Thi Nhu, e Hoang Van Tung. "Nonlinear stability of CNT-reinforced composite cylindrical panels with elastically restrained straight edges under combined thermomechanical loading conditions". Journal of Thermoplastic Composite Materials 33, n.º 2 (10 de outubro de 2018): 153–79. http://dx.doi.org/10.1177/0892705718805134.
Texto completo da fonteLiao, L. L., e K. N. Chiang. "Nonlinear and Temperature-Dependent Material Properties of AU/SN Alloy for Power Module". Journal of Mechanics 33, n.º 5 (15 de maio de 2017): 663–72. http://dx.doi.org/10.1017/jmech.2017.21.
Texto completo da fonteMonsorno, D., C. Varsakelis e M. V. Papalexandris. "A two-phase thermomechanical theory for granular suspensions". Journal of Fluid Mechanics 808 (2 de novembro de 2016): 410–40. http://dx.doi.org/10.1017/jfm.2016.649.
Texto completo da fonteTrang, Le Thi Nhu, e Hoang Van Tung. "Thermomechanical nonlinear stability of pressure-loaded CNT-reinforced composite doubly curved panels resting on elastic foundations". Nonlinear Engineering 8, n.º 1 (28 de janeiro de 2019): 582–96. http://dx.doi.org/10.1515/nleng-2018-0077.
Texto completo da fonteLiu, Yuhong. "Polymerization-induced phase separation and resulting thermomechanical properties of thermosetting/reactive nonlinear polymer blends: A review". Journal of Applied Polymer Science 127, n.º 5 (4 de novembro de 2012): 3279–92. http://dx.doi.org/10.1002/app.38721.
Texto completo da fonteYaleu, T. B. Djuitchou, E. R. Fankem e B. R. Nana Nbendjo. "On the Nonlinear Thermomechanical Analysis of a Stayed-Beam Having Fractional Viscoelastic Properties in Complex Environment". Journal of Applied Nonlinear Dynamics 13, n.º 2 (junho de 2024): 351–71. http://dx.doi.org/10.5890/jand.2024.06.012.
Texto completo da fonteTrang, Le Thi Nhu, e Hoang Van Tung. "Thermomechanical nonlinear stability of pressure-loaded functionally graded carbon nanotube-reinforced composite doubly curved panels with tangentially restrained edges". Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 233, n.º 16 (11 de junho de 2019): 5848–59. http://dx.doi.org/10.1177/0954406219856374.
Texto completo da fonteYang, Jian, Li-Yun Fu, Bo-Ye Fu, Zhiwei Wang e Wanting Hou. "High-temperature effect on the material constants and elastic moduli for solid rocks". Journal of Geophysics and Engineering 18, n.º 4 (agosto de 2021): 583–93. http://dx.doi.org/10.1093/jge/gxab037.
Texto completo da fonteWoods, Bruce W., Stephen A. Payne, John E. Marion, Robert S. Hughes e Laura E. Davis. "Thermomechanical and thermo-optical properties of the LiCaAlF_6:Cr^3+ laser material". Journal of the Optical Society of America B 8, n.º 5 (1 de maio de 1991): 970. http://dx.doi.org/10.1364/josab.8.000970.
Texto completo da fonteGaval, Vivek Ramdas, M. Divekar, A. Wonisch e G. Jadhav. "Increase in Warpage Prediction Accuracy for Glass Filled Polyamide Material (PA66) through Integrative Simulation Approach". ASM Science Journal 15 (17 de maio de 2021): 1–9. http://dx.doi.org/10.32802/asmscj.2021.697.
Texto completo da fonteSong, Chengli, Tim Frank e Alfred Cuschieri. "Shape Memory Alloy Clip for Compression Colonic Anastomosis". Journal of Biomechanical Engineering 127, n.º 2 (8 de novembro de 2004): 351–54. http://dx.doi.org/10.1115/1.1871195.
Texto completo da fonteZivkovic, Dragoljub, Dragan Milcic, Milan Banic e Pedja Milosavljevic. "Thermomechanical finite element analysis of hot water boiler structure". Thermal Science 16, suppl. 2 (2012): 387–98. http://dx.doi.org/10.2298/tsci120503177z.
Texto completo da fonteТРЕЩЕВ, А. А., e М. Ю. ДЕЛЯГИН. "COUPLED THERMOMECHANICAL CALCULATION OF A GRAPHITE-PLASTIC SHELL TAKING INTO CONSIDERATION SIGNIFICANTLY NONLINEAR MULTIMODULUS BEHAVIOUR". ВЕСТНИК ПОВОЛЖСКОГО ГОСУДАРСТВЕННОГО ТЕХНОЛОГИЧЕСКОГО УНИВЕРСИТЕТА. СЕРИЯ: МАТЕРИАЛЫ. КОНСТРУКЦИИ. ТЕХНОЛОГИИ, n.º 3(11) (6 de setembro de 2019): 101–10. http://dx.doi.org/10.25686/2542-114x.2019.3.101.
Texto completo da fonteВатульян, Александр Ованесович, e Сергей Анатольевич Нестеров. "Об особенностях идентификации переменных термомеханических характеристик функционально-градиентного прямоугольника". Computational Continuum Mechanics 16, n.º 4 (4 de janeiro de 2024): 504–16. http://dx.doi.org/10.7242/1999-6691/2023.16.4.42.
Texto completo da fonteEmel yanov, I. G., e A. N. Kislov. "THE LIMITING STATE OF A STEEL STRUCTURE UNDER EXTREME THERMOMECHANICAL LOADINGS". PNRPU Mechanics Bulletin, n.º 2 (15 de dezembro de 2024): 59–68. http://dx.doi.org/10.15593/perm.mech/2024.2.07.
Texto completo da fonteGhahfarokhi, Zahra Matin, Mehdi Salmani-Tehrani e Mahdi Moghimi Zand. "Nonlinear Thermohyperviscoelastic Constitutive Model for Soft Materials with Strain Rate and Temperature Dependency". International Journal of Applied Mechanics 12, n.º 06 (julho de 2020): 2050059. http://dx.doi.org/10.1142/s1758825120500593.
Texto completo da fontePark, H. C., S.-K. Youn, T. S. Song e N.-J. Kim. "Analysis of Temperature Distribution in a Rolling Tire Due to Strain Energy Dissipation". Tire Science and Technology 25, n.º 3 (1 de julho de 1997): 214–28. http://dx.doi.org/10.2346/1.2137541.
Texto completo da fonteThosago, Kgomotshwana Frans, Lazarus Rundora e Samuel Olumide Adesanya. "Thermodynamic Analysis of Magnetohydrodynamic Third Grade Fluid Flow with Variable Properties". International Journal of Engineering Research in Africa 55 (10 de agosto de 2021): 28–46. http://dx.doi.org/10.4028/www.scientific.net/jera.55.28.
Texto completo da fonteBehnke, Ronny, e Michael Kaliske. "Finite Element Based Analysis of Reinforcing Cords in Rolling Tires: Influence of Mechanical and Thermal Cord Properties on Tire Response". Tire Science and Technology 46, n.º 4 (1 de outubro de 2018): 294–327. http://dx.doi.org/10.2346/tire.18.4604010.
Texto completo da fonteTung, Hoang Van. "Nonlinear thermomechanical stability of shear deformable FGM shallow spherical shells resting on elastic foundations with temperature dependent properties". Composite Structures 114 (agosto de 2014): 107–16. http://dx.doi.org/10.1016/j.compstruct.2014.04.004.
Texto completo da fonteKrupke, W. F., M. D. Shinn, J. E. Marion, J. A. Caird e S. E. Stokowski. "Spectroscopic, optical, and thermomechanical properties of neodymium- and chromium-doped gadolinium scandium gallium garnet". Journal of the Optical Society of America B 3, n.º 1 (1 de janeiro de 1986): 102. http://dx.doi.org/10.1364/josab.3.000102.
Texto completo da fonteGlerum, Anne, Cedric Thieulot, Menno Fraters, Constantijn Blom e Wim Spakman. "Nonlinear viscoplasticity in ASPECT: benchmarking and applications to subduction". Solid Earth 9, n.º 2 (19 de março de 2018): 267–94. http://dx.doi.org/10.5194/se-9-267-2018.
Texto completo da fonteGranell, Ignacio, Abel Ramos e Alberto Carnicero. "A Geometry-Based Welding Distortion Prediction Tool". Materials 14, n.º 17 (24 de agosto de 2021): 4789. http://dx.doi.org/10.3390/ma14174789.
Texto completo da fonteHieu, Pham Thanh, e Hoang Van Tung. "Thermomechanical nonlinear buckling of pressure-loaded carbon nanotube reinforced composite toroidal shell segment surrounded by an elastic medium with tangentially restrained edges". Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 233, n.º 9 (30 de setembro de 2018): 3193–207. http://dx.doi.org/10.1177/0954406218802942.
Texto completo da fonteden Toonder, J. M. J., Y. Ramone, A. R. van Dijken, J. G. J. Beijer e G. Q. Zhang. "Viscoelastic Characterization of Low-Dielectric Constant SiLK Films Using Nanoindentation in Combination With Finite Element Modeling". Journal of Electronic Packaging 127, n.º 3 (12 de agosto de 2004): 276–85. http://dx.doi.org/10.1115/1.1938990.
Texto completo da fonteLing, S., e A. Dasgupta. "A Nonlinear Multi-Domain Thermomechanical Stress Analysis Method for Surface-Mount Solder Joints—Part II: Viscoplastic Analysis". Journal of Electronic Packaging 119, n.º 3 (1 de setembro de 1997): 177–82. http://dx.doi.org/10.1115/1.2792231.
Texto completo da fonteFedorov, Viktor S., Valery E. Levitsky e Ekaterina A. Isaeva. "Basic principles in the theory of force and thermal force resistance of concrete". Structural Mechanics of Engineering Constructions and Buildings 18, n.º 6 (15 de dezembro de 2022): 584–96. http://dx.doi.org/10.22363/1815-5235-2022-18-6-584-596.
Texto completo da fonteAhmad, Mohammad Ismail Ramadan, Inggar Septhia Irawati, Ali Awaludin e Suprapto Siswosukarto. "Thermomechanical Analysis of Cement Hydration Effects in Multi-layered Pier Head Concrete: Finite Element Approach". Journal of Engineering and Technological Sciences 56, n.º 5 (30 de setembro de 2024): 625–38. http://dx.doi.org/10.5614/j.eng.technol.sci.2024.56.5.7.
Texto completo da fonteLee, Baik Woo, Jeung Hyun Jeong, Woosoon Jang, Ju Young Kim, Dong Won Kim, Dongil Kwon, Jae Woong Nah e Kyung Wook Paik. "Determination of Stress-Strain Curve for Microelectronic Solder Joint by ESPI Measurement and FE Analysis". International Journal of Modern Physics B 17, n.º 08n09 (10 de abril de 2003): 1983–88. http://dx.doi.org/10.1142/s0217979203019988.
Texto completo da fonteQian, Zhengming, Gaiqi Li, Dong Mi e Xin An. "Thermomechanical Fatigue Life Prediction Method of the Trailing Edge Holes in the Turbine Blade for Turboshaft Engine". Journal of Physics: Conference Series 2168, n.º 1 (1 de janeiro de 2022): 012003. http://dx.doi.org/10.1088/1742-6596/2168/1/012003.
Texto completo da fonte