Literatura científica selecionada sobre o tema "Nonlinear periodic systems"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Nonlinear periodic systems".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Nonlinear periodic systems"
Gasiński, Leszek, e Nikolaos S. Papageorgiou. "Nonlinear Multivalued Periodic Systems". Journal of Dynamical and Control Systems 25, n.º 2 (14 de junho de 2018): 219–43. http://dx.doi.org/10.1007/s10883-018-9408-9.
Texto completo da fonteVerriest, Erik I. "Balancing for Discrete Periodic Nonlinear Systems". IFAC Proceedings Volumes 34, n.º 12 (agosto de 2001): 249–54. http://dx.doi.org/10.1016/s1474-6670(17)34093-4.
Texto completo da fonteLuo, Albert C. J. "Periodic Flows to Chaos Based on Discrete Implicit Mappings of Continuous Nonlinear Systems". International Journal of Bifurcation and Chaos 25, n.º 03 (março de 2015): 1550044. http://dx.doi.org/10.1142/s0218127415500443.
Texto completo da fonteCan, Le Xuan. "On periodic waves of the nonlinear systems". Vietnam Journal of Mechanics 20, n.º 4 (30 de dezembro de 1998): 11–19. http://dx.doi.org/10.15625/0866-7136/10037.
Texto completo da fonteSundararajan, P., e S. T. Noah. "Dynamics of Forced Nonlinear Systems Using Shooting/Arc-Length Continuation Method—Application to Rotor Systems". Journal of Vibration and Acoustics 119, n.º 1 (1 de janeiro de 1997): 9–20. http://dx.doi.org/10.1115/1.2889694.
Texto completo da fonteOrtega, Juan-Pablo. "Relative normal modes for nonlinear Hamiltonian systems". Proceedings of the Royal Society of Edinburgh: Section A Mathematics 133, n.º 3 (junho de 2003): 665–704. http://dx.doi.org/10.1017/s0308210500002602.
Texto completo da fonteGrigoraş, Victor, e Carmen Grigoraş. "Connecting Analog and Discrete Nonlinear Systems for Noise Generation". Bulletin of the Polytechnic Institute of Iași. Electrical Engineering, Power Engineering, Electronics Section 68, n.º 1 (1 de março de 2022): 81–90. http://dx.doi.org/10.2478/bipie-2022-0005.
Texto completo da fonteAbbas, Saïd, Mouffak Benchohra, Soufyane Bouriah e Juan J. Nieto. "Periodic solutions for nonlinear fractional differential systems". Differential Equations & Applications, n.º 3 (2018): 299–316. http://dx.doi.org/10.7153/dea-2018-10-21.
Texto completo da fonteKamenskii, Mikhail, Oleg Makarenkov e Paolo Nistri. "Small parameter perturbations of nonlinear periodic systems". Nonlinearity 17, n.º 1 (17 de outubro de 2003): 193–205. http://dx.doi.org/10.1088/0951-7715/17/1/012.
Texto completo da fonteGhadimi, M., A. Barari, H. D. Kaliji e G. Domairry. "Periodic solutions for highly nonlinear oscillation systems". Archives of Civil and Mechanical Engineering 12, n.º 3 (setembro de 2012): 389–95. http://dx.doi.org/10.1016/j.acme.2012.06.014.
Texto completo da fonteTeses / dissertações sobre o assunto "Nonlinear periodic systems"
Tang, Xiafei. "Periodic disturbance rejection of nonlinear systems". Thesis, University of Manchester, 2012. https://www.research.manchester.ac.uk/portal/en/theses/periodic-disturbance-rejection-of-nonlinear-systems(0bddefd9-2750-47fd-8c92-c90a01b8e1ef).html.
Texto completo da fonteAbd-Elrady, Emad. "Nonlinear Approaches to Periodic Signal Modeling". Doctoral thesis, Uppsala : Acta Universitatis Upsaliensis : Univ.-bibl. [distributör], 2005. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-4644.
Texto completo da fonteGroves, James O. "Small signal analysis of nonlinear systems with periodic operating trajectories". Diss., This resource online, 1995. http://scholar.lib.vt.edu/theses/available/etd-06062008-162614/.
Texto completo da fonteZhang, Zhen. "Adaptive robust periodic output regulation". Columbus, Ohio : Ohio State University, 2007. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1187118803.
Texto completo da fonteKhames, Imene. "Nonlinear network wave equations : periodic solutions and graph characterizations". Thesis, Normandie, 2018. http://www.theses.fr/2018NORMIR04/document.
Texto completo da fonteIn this thesis, we study the discrete nonlinear wave equations in arbitrary finite networks. This is a general model, where the usual continuum Laplacian is replaced by the graph Laplacian. We consider such a wave equation with a cubic on-site nonlinearity which is the discrete φ4 model, describing a mechanical network of coupled nonlinear oscillators or an electrical network where the components are diodes or Josephson junctions. The linear graph wave equation is well understood in terms of normal modes, these are periodic solutions associated to the eigenvectors of the graph Laplacian. Our first goal is to investigate the continuation of normal modes in the nonlinear regime and the modes coupling in the presence of nonlinearity. By inspecting the normal modes of the graph Laplacian, we identify which ones can be extended into nonlinear periodic orbits. They are normal modes whose Laplacian eigenvectors are composed uniquely of {1}, {-1,+1} or {-1,0,+1}. We perform a systematic linear stability (Floquet) analysis of these orbits and show the modes coupling when the orbit is unstable. Then, we characterize all graphs for which there are eigenvectors of the graph Laplacian having all their components in {-1,+1} or {-1,0,+1}, using graph spectral theory. In the second part, we investigate periodic solutions that are spatially localized. Assuming a large amplitude localized initial condition on one node of the graph, we approximate its evolution by the Duffing equation. The rest of the network satisfies a linear system forced by the excited node. This approximation is validated by reducing the discrete φ4 equation to the graph nonlinear Schrödinger equation and by Fourier analysis. The results of this thesis relate nonlinear dynamics to graph spectral theory
Warkomski, Edward Joseph 1958. "Nonlinear structures subject to periodic and random vibration with applications to optical systems". Thesis, The University of Arizona, 1990. http://hdl.handle.net/10150/277811.
Texto completo da fonteZhang, Xiaohong. "Optimal feedback control for nonlinear discrete systems and applications to optimal control of nonlinear periodic ordinary differential equations". Diss., Virginia Tech, 1993. http://hdl.handle.net/10919/40185.
Texto completo da fonteMyers, Owen Dale. "Spatiotemporally Periodic Driven System with Long-Range Interactions". ScholarWorks @ UVM, 2015. http://scholarworks.uvm.edu/graddis/524.
Texto completo da fonteHayward, Peter J. "On the computation of periodic responses for nonlinear dynamic systems with multi-harmonic forcing". Thesis, University of Sussex, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.429733.
Texto completo da fonteRoyston, Thomas James. "Computational and Experimental Analyses of Passive and Active, Nonlinear Vibration Mounting Systems Under Periodic Excitation /". The Ohio State University, 1995. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487928649987553.
Texto completo da fonteLivros sobre o assunto "Nonlinear periodic systems"
Reithmeier, Eduard. Periodic Solutions of Nonlinear Dynamical Systems. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/bfb0094521.
Texto completo da fonteChulaevskiĭ, V. A. Almost periodic operators and related nonlinear integrable systems. Manchester, UK: Manchester University Press, 1989.
Encontre o texto completo da fonteAmbrosetti, A. Periodic solutions of singular Lagrangian systems. Boston: Birkhäuser, 1993.
Encontre o texto completo da fonteauthor, Bolle Philippe, ed. Quasi-periodic solutions of nonlinear wave equations in the D-dimensional torus. Berlin: European Mathematical Society, 2020.
Encontre o texto completo da fonteReithmeier, Eduard. Periodic solutions of nonlinear dynamical systems: Numerical computation, stability, bifurcation, and transition to chaos. Berlin: Springer-Verlag, 1991.
Encontre o texto completo da fonteP, Walker K., e United States. National Aeronautics and Space Administration., eds. Nonlinear mesomechanics of composites with periodic microstructure: Final report on NASA NAG3-882. [Washington, DC]: National Aeronautics and Space Administration, 1991.
Encontre o texto completo da fonteFiedler, Bernold. Global bifurcation of periodic solutions with symmetry. Berlin: Springer-Verlag, 1988.
Encontre o texto completo da fonteLuo, Albert C. J. Periodic Flows to Chaos in Time-delay Systems. Springer, 2016.
Encontre o texto completo da fonteChulaevsky, V. A. Almost Periodic Operators and Related Nonlinear Integrable Systems (Nonlinear Science: Theory & Application). John Wiley & Sons, 1992.
Encontre o texto completo da fonteCoti-Zelati, V., e A. Ambrosetti. Periodic Solutions of Singular Lagrangian Systems. Birkhauser Verlag, 2012.
Encontre o texto completo da fonteCapítulos de livros sobre o assunto "Nonlinear periodic systems"
Toda, Morikazu. "Periodic Systems". In Theory of Nonlinear Lattices, 98–146. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-83219-2_4.
Texto completo da fonteLuo, Albert C. J. "Periodic Flows in Continuous Systems". In Nonlinear Physical Science, 199–279. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-47275-0_5.
Texto completo da fonteSzemplińska-Stupnicka, Wanda. "Secondary Resonances (Periodic and Almost-Periodic)". In The Behavior of Nonlinear Vibrating Systems, 171–245. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-009-1870-2_7.
Texto completo da fonteAkhmet, Marat. "Discontinuous Almost Periodic Functions". In Nonlinear Systems and Complexity, 69–84. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-20572-0_3.
Texto completo da fonteAkhmet, Marat. "Discontinuous Almost Periodic Solutions". In Nonlinear Systems and Complexity, 85–101. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-20572-0_4.
Texto completo da fonteAnishchenko, Vadim S., Tatyana E. Vadivasova e Galina I. Strelkova. "Synchronization of Periodic Self-Sustained Oscillations". In Deterministic Nonlinear Systems, 217–43. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-06871-8_13.
Texto completo da fonteBelyakov, Vladimir Alekseevich. "Nonlinear Optics of Periodic Media". In Partially Ordered Systems, 188–214. New York, NY: Springer New York, 1992. http://dx.doi.org/10.1007/978-1-4612-4396-0_6.
Texto completo da fonteAkhmet, Marat. "Periodic Solutions of Nonlinear Systems". In Principles of Discontinuous Dynamical Systems, 99–111. New York, NY: Springer New York, 2010. http://dx.doi.org/10.1007/978-1-4419-6581-3_7.
Texto completo da fonteLuo, Albert C. J. "Periodic Flows in Time-delay Systems". In Nonlinear Systems and Complexity, 221–70. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-42778-2_4.
Texto completo da fonteLuo, Albert C. J. "Periodic Flows in Time-Delay Systems". In Nonlinear Systems and Complexity, 81–113. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-42664-8_3.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Nonlinear periodic systems"
Sukhorukov, Andrey A., N. Marsal, A. Minovich, D. Wolfersberger, M. Sciamanna, G. Montemezzani, D. N. Neshev e Yu S. Kivshar. "Control of modulational instability in periodic feedback systems". In Nonlinear Photonics. Washington, D.C.: OSA, 2010. http://dx.doi.org/10.1364/np.2010.nmd7.
Texto completo da fonteShermeneva, Maria. "Nonlinear periodic waves on a slope". In Modeling complex systems. AIP, 2001. http://dx.doi.org/10.1063/1.1386843.
Texto completo da fonteVakakis, Alexander. "Nonlinear Periodic Systems: Bands and Localization". In ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2009. http://dx.doi.org/10.1115/detc2009-87315.
Texto completo da fonteVladimirov, A. G., E. B. Pelyukhova e E. E. Fradkin. "Periodic and Chaotic Operations of a Laser with a Saturable Absorber". In Nonlinear Dynamics in Optical Systems. Washington, D.C.: Optica Publishing Group, 1990. http://dx.doi.org/10.1364/nldos.1990.oc527.
Texto completo da fonteMandel, Paul, N. P. Pettiaux, Wang Kaige, P. Galatola e L. A. Lugiato. "Generic Properties of Periodic Attractors in Two-Photon Processes". In Nonlinear Dynamics in Optical Systems. Washington, D.C.: Optica Publishing Group, 1990. http://dx.doi.org/10.1364/nldos.1990.ob257.
Texto completo da fonteWinful, Herbert G., Shawe-Shiuan Wang e Richard K. DeFreez. "Periodic and Chaotic Beam Scanning in Semiconductor Laser Arrays". In Nonlinear Dynamics in Optical Systems. Washington, D.C.: Optica Publishing Group, 1990. http://dx.doi.org/10.1364/nldos.1990.pdp4.
Texto completo da fonteWinful, Herbert G., Shawe-Shiuan Wang e Richard K. DcFreez. "Spontaneous Periodic and Chaotic Beam Scanning in Semiconductor Laser Arrays". In Nonlinear Dynamics in Optical Systems. Washington, D.C.: Optica Publishing Group, 1990. http://dx.doi.org/10.1364/nldos.1990.sdslad119.
Texto completo da fonteDe Jagher, P. C., e D. Lenstra. "The modulated semiconductor laser: a Hamiltonian search for its periodic attractors". In Nonlinear Dynamics in Optical Systems. Washington, D.C.: Optica Publishing Group, 1992. http://dx.doi.org/10.1364/nldos.1992.tha5.
Texto completo da fontePettiaux, Nicolas, e Thomas Erneux. "From harmonic to pulsating periodic solutions in intracavity second harmonic generation". In Nonlinear Dynamics in Optical Systems. Washington, D.C.: Optica Publishing Group, 1992. http://dx.doi.org/10.1364/nldos.1992.mc25.
Texto completo da fonteRoyston, Thomas J., e Rajendra Singh. "Periodic Response of Nonlinear Engine Mounting Systems". In SAE Noise and Vibration Conference and Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1995. http://dx.doi.org/10.4271/951297.
Texto completo da fonteRelatórios de organizações sobre o assunto "Nonlinear periodic systems"
Mirus, Kevin A. Control of nonlinear systems using periodic parametric perturbations with application to a reversed field pinch. Office of Scientific and Technical Information (OSTI), janeiro de 1998. http://dx.doi.org/10.2172/656820.
Texto completo da fonteSoloviev, Vladimir, e Andrey Belinskij. Methods of nonlinear dynamics and the construction of cryptocurrency crisis phenomena precursors. [б. в.], 2018. http://dx.doi.org/10.31812/123456789/2851.
Texto completo da fonteMoon, Francis C. Nonlinear dynamics of fluid-structure systems. Final technical report for period January 5, 1991 - December 31, 1997. Office of Scientific and Technical Information (OSTI), julho de 1999. http://dx.doi.org/10.2172/756804.
Texto completo da fonteBielinskyi, Andrii O., Oleksandr A. Serdyuk, Сергій Олексійович Семеріков, Володимир Миколайович Соловйов, Андрій Іванович Білінський e О. А. Сердюк. Econophysics of cryptocurrency crashes: a systematic review. Криворізький державний педагогічний університет, dezembro de 2021. http://dx.doi.org/10.31812/123456789/6974.
Texto completo da fonteWu, Yingjie, Selim Gunay e Khalid Mosalam. Hybrid Simulations for the Seismic Evaluation of Resilient Highway Bridge Systems. Pacific Earthquake Engineering Research Center, University of California, Berkeley, CA, novembro de 2020. http://dx.doi.org/10.55461/ytgv8834.
Texto completo da fonte