Siga este link para ver outros tipos de publicações sobre o tema: Nonlinear optics.

Artigos de revistas sobre o tema "Nonlinear optics"

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Nonlinear optics".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.

1

Fabelinskii, Immanuil L. "Nonlinear optics". Uspekhi Fizicheskih Nauk 154, n.º 4 (1988): 703. http://dx.doi.org/10.3367/ufnr.0154.198804g.0703.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

YAJIMA, TATSUO. "Nonlinear optics." Review of Laser Engineering 21, n.º 1 (1993): 133–35. http://dx.doi.org/10.2184/lsj.21.133.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

KOBAYASHI, TAKAYOSHI. "Nonlinear Optics". Sen'i Gakkaishi 45, n.º 2 (1989): P68—P76. http://dx.doi.org/10.2115/fiber.45.p68.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Fleischer, Jason W., Dragomir N. Neshev, Guy Bartal, Tristram J. Alexander, Oren Cohen, Elena A. Ostrovskaya, Ofer Manela et al. "Nonlinear Optics". Optics and Photonics News 15, n.º 12 (1 de dezembro de 2004): 30. http://dx.doi.org/10.1364/opn.15.12.000030.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Baluq, Mihaela, Joel Hales, David J. Hagan, Eric W. Van Stryland, Michael I. Bakunov, Alexey V. Maslov, Sergey B. Bodrov et al. "Nonlinear Optics". Optics and Photonics News 16, n.º 12 (1 de dezembro de 2005): 28. http://dx.doi.org/10.1364/opn.16.12.000028.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Fabelinskiĭ, Immanuil L. "Nonlinear optics". Soviet Physics Uspekhi 31, n.º 4 (30 de abril de 1988): 380–81. http://dx.doi.org/10.1070/pu1988v031n04abeh005758.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Moloney, Jerome V., e Alan C. Newell. "Nonlinear optics". Physica D: Nonlinear Phenomena 44, n.º 1-2 (agosto de 1990): 1–37. http://dx.doi.org/10.1016/0167-2789(90)90045-q.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Ferguson, A. I. "Nonlinear Optics". Journal of Modern Optics 39, n.º 11 (novembro de 1992): 2375. http://dx.doi.org/10.1080/09500349214552381.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Firth, W. J. "Nonlinear Optics". Journal of Modern Optics 40, n.º 5 (maio de 1993): 967–68. http://dx.doi.org/10.1080/09500349314551011.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Sauter, E. G., e Christos Flytzanis. "Nonlinear Optics". Physics Today 51, n.º 1 (janeiro de 1998): 64–65. http://dx.doi.org/10.1063/1.882109.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
11

Vysloukh, V. A. "Nonlinear fiber optics". Uspekhi Fizicheskih Nauk 160, n.º 5 (1990): 151. http://dx.doi.org/10.3367/ufnr.0160.199005k.0151.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
12

Soskin, M. S., e M. V. Vasnetsov. "Nonlinear singular optics". Pure and Applied Optics: Journal of the European Optical Society Part A 7, n.º 2 (março de 1998): 301–11. http://dx.doi.org/10.1088/0963-9659/7/2/019.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
13

Anderson, Brian P., e Pierre Meystre. "Nonlinear atom optics". Contemporary Physics 44, n.º 6 (novembro de 2003): 473–83. http://dx.doi.org/10.1080/00107510310001608863.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
14

de Michel, Marc, e Dan Ostrowsky. "Nonlinear integrated optics". Physics World 3, n.º 3 (março de 1990): 56–62. http://dx.doi.org/10.1088/2058-7058/3/3/28.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
15

Bruno, E. Schmidt, Philippe Lassonde, Guilmot Ernotte, Matteo Clerici, Roberto Morandotti, Heide Ibrahim e François Légaré. "Linearizing Nonlinear Optics". EPJ Web of Conferences 205 (2019): 01007. http://dx.doi.org/10.1051/epjconf/201920501007.

Texto completo da fonte
Resumo:
Fourier nonlinear optics merges the simplicity of linear optics with the power of nonlinear optics to achieve a decoupling of frequencies, amplitudes and phases in nonlinear processes - enabling first deep UV shaping at 207nm.
Estilos ABNT, Harvard, Vancouver, APA, etc.
16

Anderson, Brian P., e Pierre Meystre. "Nonlinear Atom Optics". Optics and Photonics News 13, n.º 6 (1 de junho de 2002): 20. http://dx.doi.org/10.1364/opn.13.6.000020.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
17

Vysloukh, Victor A. "Nonlinear fiber optics". Soviet Physics Uspekhi 33, n.º 5 (31 de maio de 1990): 400. http://dx.doi.org/10.1070/pu1990v033n05abeh002596.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
18

Lenz, G., P. Meystre e E. M. Wright. "Nonlinear atom optics". Physical Review Letters 71, n.º 20 (15 de novembro de 1993): 3271–74. http://dx.doi.org/10.1103/physrevlett.71.3271.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
19

Rasing, Th. "Nonlinear magneto-optics". Journal of Magnetism and Magnetic Materials 175, n.º 1-2 (novembro de 1997): 35–50. http://dx.doi.org/10.1016/s0304-8853(97)00175-3.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
20

Stegeman, George I., e Colin T. Seaton. "Nonlinear integrated optics". Journal of Applied Physics 58, n.º 12 (15 de dezembro de 1985): R57—R78. http://dx.doi.org/10.1063/1.336205.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
21

Dalton, B. J. "Modern Nonlinear Optics". Journal of Modern Optics 41, n.º 8 (agosto de 1994): 1678. http://dx.doi.org/10.1080/09500349414552531.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
22

Dianov, Evgenii M., P. V. Mamyshev e A. M. Prokhorov. "Nonlinear fiber optics". Soviet Journal of Quantum Electronics 18, n.º 1 (31 de janeiro de 1988): 1–15. http://dx.doi.org/10.1070/qe1988v018n01abeh010192.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
23

Kreher, K. "Modern Nonlinear Optics". Zeitschrift für Physikalische Chemie 213, Part_1 (janeiro de 1999): 109–10. http://dx.doi.org/10.1524/zpch.1999.213.part_1.109.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
24

Feinberg, Jack. "Photorefractive Nonlinear Optics". Physics Today 41, n.º 10 (outubro de 1988): 46–52. http://dx.doi.org/10.1063/1.881157.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
25

Chin, S. L., F. Théberge e W. Liu. "Filamentation nonlinear optics". Applied Physics B 86, n.º 3 (29 de setembro de 2006): 477–83. http://dx.doi.org/10.1007/s00340-006-2455-z.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
26

Manzoni, Cristian, e Giulio Cerullo. "Parametric nonlinear optics". Photoniques, n.º 122 (2023): 46–51. http://dx.doi.org/10.1051/photon/202312246.

Texto completo da fonte
Resumo:
Many scientific and technological applications require the generation of broadly tunable femtosecond light pulses. Optical parametric amplifiers (OPAs) exploit second-order nonlinear interactions to convert a high-power fixed wavelength pulse (the pump) into a tunable pulse (the signal). This paper reviews the principles of OPAs and highlights their capability to generate few-optical-cycle pulses with high energy and carrier-envelope-phase stability.
Estilos ABNT, Harvard, Vancouver, APA, etc.
27

Meredith, Gerald R. "Organic Materials for Nonlinear Optics". MRS Bulletin 13, n.º 8 (agosto de 1988): 24–29. http://dx.doi.org/10.1557/s0883769400064642.

Texto completo da fonte
Resumo:
were very exciting but speculative, being technologically feasible only if new classes of materials could be developed The subject of materials in nonlinear optics (NLO) encompasses a wide range of important topics. Today the line between materials and NLO processes has become fuzzy, particularly for newer NLO processes (e.g. photorefrac-tion, and optical bistability, logic and computing). For more established NLO processes (e.g., harmonic generation, parametric processes, linear electro-optic effect, etc.) the subjects are well studied and the importance of various materials properties on the NLO process are known, though these properties are not necessarily predictable, controllable, or optimized in current materials.A decade ago, having been introduced to NLO phenomena through postdoctoral research, I had an opportunity to define and pursue an NLO research program at Xerox's Webster Research Center. The question was posed: “Are new materials needed for NLO applications?” The answer must start with another question: “Which NLO process … with light of what wavelength, pulse duration, and power… and for what purpose?”It was clear that important limitations to many of the novel things one might do with optics were: insufficient nonlin-earity magnitude, inability to fabricate reliable device structures, occurrence of deleterious optical properties, and restrictions due to other material properties. The newer NLO phenomena. Use of older NLO processes in new technological applications seemed a more down-to-earth quest.
Estilos ABNT, Harvard, Vancouver, APA, etc.
28

SHAN, JIE, AJAY NAHATA e TONY F. HEINZ. "TERAHERTZ TIME-DOMAIN SPECTROSCOPY BASED ON NONLINEAR OPTICS". Journal of Nonlinear Optical Physics & Materials 11, n.º 01 (março de 2002): 31–48. http://dx.doi.org/10.1142/s0218863502000845.

Texto completo da fonte
Resumo:
We present a brief review of the use of nonlinear optics for broadband terahertz (THz) time-domain spectroscopy with femtosecond laser pulses. The generation of THz pulses is accomplished by optical rectification and coherent detection by electro-optic sampling or field-induced second-harmonic generation. The approach permits exceptional time response, as well as the possibility for multichannel detection schemes.
Estilos ABNT, Harvard, Vancouver, APA, etc.
29

Downer, M. C. "OPTICS: A New Low for Nonlinear Optics". Science 298, n.º 5592 (11 de outubro de 2002): 373–75. http://dx.doi.org/10.1126/science.1078098.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
30

Elston, Steve J. "Optics and Nonlinear Optics of Liquid Crystals". Journal of Modern Optics 41, n.º 7 (julho de 1994): 1517–18. http://dx.doi.org/10.1080/09500349414551451.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
31

Ackemann, Thorsten, Cornelia Denz e Fedor Mitschke. "Dynamics in Nonlinear Optics and Quantum Optics". Applied Physics B 81, n.º 7 (novembro de 2005): 881–82. http://dx.doi.org/10.1007/s00340-005-2067-z.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
32

Liu, Chao, Xiao Han, Rongchao Shi, Siming Qi, Songhua Chen, Liang Xu e Jialiang Xu. "Nonlinear optics of graphdiyne". Materials Chemistry Frontiers 5, n.º 17 (2021): 6413–28. http://dx.doi.org/10.1039/d1qm00834j.

Texto completo da fonte
Resumo:
Graphdiyne features a high π-conjugation degree and an intrinsic natural bandgap, which guarantee a large optical refractive index and broadband absorption, and thus promises a wide range of application prospects in nonlinear optics.
Estilos ABNT, Harvard, Vancouver, APA, etc.
33

Kuzyk, Mark G. "Nonlinear Optics: Fundamental Limits of Nonlinear Susceptibilities". Optics and Photonics News 14, n.º 12 (1 de dezembro de 2003): 26. http://dx.doi.org/10.1364/opn.14.12.000026.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
34

Konorov, S. O. "Polarization Nonlinear Optics of Quadratically Nonlinear Azopolymers". Optics and Spectroscopy 99, n.º 1 (2005): 131. http://dx.doi.org/10.1134/1.1999905.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
35

Miller, Johanna L. "Nonlinear optical computing doesn’t need nonlinear optics". Physics Today 77, n.º 10 (1 de outubro de 2024): 12–14. http://dx.doi.org/10.1063/pt.vbbo.lurd.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
36

Jordan, C., G. Marowsky, R. Buhleier, G. Lüpke, E. J. Canto-Said, Z. Gogolak e J. Kuhl. "Silicon Surface Nonlinear Optics". Materials Science Forum 173-174 (setembro de 1994): 153–58. http://dx.doi.org/10.4028/www.scientific.net/msf.173-174.153.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
37

Litchinitser, Natalia M. "Nonlinear optics in metamaterials". Advances in Physics: X 3, n.º 1 (janeiro de 2018): 1367628. http://dx.doi.org/10.1080/23746149.2017.1367628.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
38

Hübner, Wolfgang. "Magneto-optics goes nonlinear". Physics World 8, n.º 10 (outubro de 1995): 21–22. http://dx.doi.org/10.1088/2058-7058/8/10/23.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
39

Boyd, Robert W., e Barry R. Masters. "Nonlinear Optics, Third Edition". Journal of Biomedical Optics 14, n.º 2 (2009): 029902. http://dx.doi.org/10.1117/1.3115345.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
40

Ansari, Nadeem A., Colin Pask e David R. Rowland. "Momentum in nonlinear optics". Journal of Modern Optics 47, n.º 6 (maio de 2000): 993–1011. http://dx.doi.org/10.1080/09500340008233401.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
41

A. Ansari, Colin Pask, David R. Row, Nadeem. "Momentum in nonlinear optics". Journal of Modern Optics 47, n.º 6 (15 de maio de 2000): 993–1011. http://dx.doi.org/10.1080/095003400147629.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
42

Gavrilenko, Vladimir I., Tatiana V. Murzina e Goro Mizutani. "Nonlinear Optics of Nanostructures". Physics Research International 2012 (9 de dezembro de 2012): 1–2. http://dx.doi.org/10.1155/2012/648758.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
43

Hau, Lene Vestergaard. "Nonlinear optics: Shocking superfluids". Nature Physics 3, n.º 1 (janeiro de 2007): 13–14. http://dx.doi.org/10.1038/nphys498.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
44

Sutherland, Richard L. "Handbook of Nonlinear Optics". Optical Engineering 36, n.º 3 (1 de março de 1997): 964. http://dx.doi.org/10.1117/1.601248.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
45

Ghamsari, Behnood G., e Pierre Berini. "Nonlinear optics rules magnetism". Nature Photonics 10, n.º 2 (29 de janeiro de 2016): 74–75. http://dx.doi.org/10.1038/nphoton.2015.272.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
46

Donnat, Phillipe, e Jeffrey Rauch. "Dispersive nonlinear geometric optics". Journal of Mathematical Physics 38, n.º 3 (março de 1997): 1484–523. http://dx.doi.org/10.1063/1.531905.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
47

Sorokin, P. P., e J. H. Glownia. "Nonlinear optics in space". Canadian Journal of Physics 78, n.º 5-6 (5 de abril de 2000): 461–81. http://dx.doi.org/10.1139/p00-016.

Texto completo da fonte
Resumo:
A detailed model for nonlinear photoexcitation of H2 in space is proposed and considered at length. It is shown that, on the basis of this model, one is able to provide at least partial explanations for three famous astrophysical spectral mysteries pertaining to our galaxy. These concern the carrier identities of the Diffuse Interstellar (Absorption) Bands (DIBs), the Unidentified Infrared (Emission) Bands (UIBs), and the visible bands emitted by the Red Rectangle nebula.PACS Nos.: 95.30Gv, 33.70-w
Estilos ABNT, Harvard, Vancouver, APA, etc.
48

Kennedy, Brian. "Nonlinear optics made clear". Physics World 5, n.º 5 (maio de 1992): 47–48. http://dx.doi.org/10.1088/2058-7058/5/5/32.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
49

Meyer‐Arendt, Jurgen R. "Nonlinear Optics: Basic Concepts". American Journal of Physics 60, n.º 7 (julho de 1992): 669. http://dx.doi.org/10.1119/1.17097.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
50

Landsberg, P. T. "Physics of Nonlinear Optics". Progress in Quantum Electronics 25, n.º 4 (janeiro de 2001): 192. http://dx.doi.org/10.1016/s0079-6727(01)00010-6.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Oferecemos descontos em todos os planos premium para autores cujas obras estão incluídas em seleções literárias temáticas. Contate-nos para obter um código promocional único!

Vá para a bibliografia