Literatura científica selecionada sobre o tema "Nonlinear control methods"

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Nonlinear control methods".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Artigos de revistas sobre o assunto "Nonlinear control methods"

1

Conte, G., C. Moog e A. Perdon. "Algebraic Methods for Nonlinear Control Systems". IEEE Transactions on Automatic Control 52, n.º 12 (dezembro de 2007): 2395–96. http://dx.doi.org/10.1109/tac.2007.911476.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

CARMICHAEL, N., e M. D. QUINN. "Fixed-Point Methods in Nonlinear Control". IMA Journal of Mathematical Control and Information 5, n.º 1 (1988): 41–67. http://dx.doi.org/10.1093/imamci/5.1.41.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Han, Jing-Qing. "Nonlinear design methods for control systems". IFAC Proceedings Volumes 32, n.º 2 (julho de 1999): 1531–36. http://dx.doi.org/10.1016/s1474-6670(17)56259-x.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Hager, William W. "Multiplier Methods for Nonlinear Optimal Control". SIAM Journal on Numerical Analysis 27, n.º 4 (agosto de 1990): 1061–80. http://dx.doi.org/10.1137/0727063.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Porubov, Alexey, e Boris Andrievsky. "Control methods for localization of nonlinear waves". Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 375, n.º 2088 (6 de março de 2017): 20160212. http://dx.doi.org/10.1098/rsta.2016.0212.

Texto completo da fonte
Resumo:
A general form of a distributed feedback control algorithm based on the speed–gradient method is developed. The goal of the control is to achieve nonlinear wave localization. It is shown by example of the sine-Gordon equation that the generation and further stable propagation of a localized wave solution of a single nonlinear partial differential equation may be obtained independently of the initial conditions. The developed algorithm is extended to coupled nonlinear partial differential equations to obtain consistent localized wave solutions at rather arbitrary initial conditions. This article is part of the themed issue ‘Horizons of cybernetical physics’.
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Almashaal, M. J., e A. R. Gaiduk. "METHODS COMPARISON OF NONLINEAR CONTROL SYSTEMS DESIGN". Mathematical Methods in Technologies and Technics, n.º 4 (2021): 21–24. http://dx.doi.org/10.52348/2712-8873_mmtt_2021_4_21.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Hedrick, J. Karl, e Swaminathan Gopalswamy. "Nonlinear flight control design via sliding methods". Journal of Guidance, Control, and Dynamics 13, n.º 5 (setembro de 1990): 850–58. http://dx.doi.org/10.2514/3.25411.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Shakeel, Tanzeela, Jehangir Arshad, Mujtaba Hussain Jaffery, Ateeq Ur Rehman, Elsayed Tag Eldin, Nivin A. Ghamry e Muhammad Shafiq. "A Comparative Study of Control Methods for X3D Quadrotor Feedback Trajectory Control". Applied Sciences 12, n.º 18 (15 de setembro de 2022): 9254. http://dx.doi.org/10.3390/app12189254.

Texto completo da fonte
Resumo:
Unmanned aerial vehicles (UAVs), particularly quadrotor, have seen steady growth in use over the last several decades. The quadrotor is an under-actuated nonlinear system with few actuators in comparison to the degree of freedom (DOF); hence, stabilizing its attitude and positions is a significant challenge. Furthermore, the inclusion of nonlinear dynamic factors and uncertainties makes controlling its maneuverability more challenging. The purpose of this research is to design, implement, and evaluate the effectiveness of linear and nonlinear control methods for controlling an X3D quadrotor’s intended translation position and rotation angles while hovering. The dynamics of the X3D quadrotor model were implemented in Simulink. Two linear controllers, linear quadratic regulator (LQR) and proportional integral derivate (PID), and two nonlinear controllers, fuzzy controller (FC) and model reference adaptive PID Controller (MRAPC) employing the MIT rule, were devised and implemented for the response analysis. In the MATLAB Simulink Environment, the transient performance of nonlinear and linear controllers for an X3D quadrotor is examined in terms of settling time, rising time, peak time, delay time, and overshoot. Simulation results suggest that the LQR control approach is better because of its robustness and comparatively superior performance characteristics to other controllers, particularly nonlinear controllers, listed at the same operating point, as overshoot is 0.0% and other factors are minimal for the x3D quadrotor. In addition, the LQR controller is intuitive and simple to implement. In this research, all control approaches were verified to provide adequate feedback for quadrotor stability.
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Gaiduk, A. R., S. G. Kapustyan e M. J. Almashaal. "Comparison of methods of nonlinear control systems design". Vestnik IGEU, n.º 6 (28 de dezembro de 2021): 54–61. http://dx.doi.org/10.17588/2072-2672.2021.6.054-061.

Texto completo da fonte
Resumo:
The issue of designing nonlinear control systems is a complex problem. A lot of methods are known that allow us to find a suitable control for a given nonlinear object that provides asymptotic stability of the nonlinear system equilibrium and an acceptable quality of the transient process. Many of these methods are difficult to apply in practice. Thus, comparing some of the methods in terms of simplicity of use is of great interest. Two analytical methods for the synthesis of nonlinear control systems are considered. They are the algebraic polynomial-matrix method that uses a quasilinear model, and the feedback linearization method that uses the Brunovsky model in combination with special feedbacks. A comparative analysis of the algebraic polynomial-matrix method and the feedback linearization method is carried out. It is found out that the algebraic polynomial-matrix method (APM) is much simpler than the feedback linearization method (FLM). A numerical example of designing a system that is synthesized by these methods is considered. It is found out that the system synthesized by the APM method has a region of attraction of the equilibrium position twice as large as the region of attraction of the system synthesized by the FLM method. It is reasonable to use the algebraic polynomial-matrix method with the quasilinear models in case of synthesis of control systems of objects with differentiable nonlinearities.
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Bartolini, G., E. Punta e T. Zolezzi. "Simplex Methods for Nonlinear Uncertain Sliding-Mode Control". IEEE Transactions on Automatic Control 49, n.º 6 (junho de 2004): 922–33. http://dx.doi.org/10.1109/tac.2004.829617.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.

Teses / dissertações sobre o assunto "Nonlinear control methods"

1

Cho, Dong-Il. "Nonlinear control methods for automotive powertrain systems". Thesis, Massachusetts Institute of Technology, 1987. http://hdl.handle.net/1721.1/14682.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Benouarets, Mourad. "Some design methods for linear and nonlinear controllers". Thesis, University of Sussex, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.333454.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Huynh, Nguyen. "Digital control and monitoring methods for nonlinear processes". Link to electronic thesis, 2006. http://www.wpi.edu/Pubs/ETD/Available/etd-100906-083012/.

Texto completo da fonte
Resumo:
Dissertation (Ph.D.)--Worcester Polytechnic Institute.
Keywords: Parametric optimization; nonlinear dynamics; functional equations; chemical reaction system dynamics; time scale multiplicity; robust control; nonlinear observers; invariant manifold; process monitoring; Lyapunov stability. Includes bibliographical references (leaves 92-98).
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Verschueren, Robin [Verfasser], e Moritz [Akademischer Betreuer] Diehl. "Convex approximation methods for nonlinear model predictive control". Freiburg : Universität, 2018. http://d-nb.info/1192660641/34.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Blanchard, Eunice Anita. "Exact penalty methods for nonlinear optimal control problems". Thesis, Curtin University, 2014. http://hdl.handle.net/20.500.11937/1805.

Texto completo da fonte
Resumo:
Research comprised of developing solution techniques to three classes of non-standard optimal control problems, namely: optimal control problems with discontinuous objective functions arising in aquaculture operations; impulsive optimal control problems with minimum subsystem durations; optimal control problems involving dual-mode hybrid systems with state-dependent switching conditions. The numerical algorithms developed involved an exact penalty approach to transform the constrained problem into an unconstrained problem which was readily solvable by a standard optimal control software.
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Altafini, Claudio. "Geometric control methods for nonlinear systems and robotic applications". Doctoral thesis, Stockholm : Tekniska högsk, 2001. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-3151.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Nanka-Bruce, Oona. "Some computer aided design methods for nonlinear control systems". Thesis, University of Sussex, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.252934.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Wang, Dazhong. "Polynomial level-set methods for nonlinear dynamics and control /". May be available electronically:, 2007. http://proquest.umi.com/login?COPT=REJTPTU1MTUmSU5UPTAmVkVSPTI=&clientId=12498.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Kasnakoglu, Cosku. "Reduced order modeling, nonlinear analysis and control methods for flow control problems". Columbus, Ohio : Ohio State University, 2007. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1195629380.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Haskara, Ibrahim. "Sliding mode estimation and optimization methods in nonlinear control problems". The Ohio State University, 1999. http://rave.ohiolink.edu/etdc/view?acc_num=osu1250272986.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.

Livros sobre o assunto "Nonlinear control methods"

1

Lennart, Ljung, ed. Control theory: Multivariable and nonlinear methods. London: Taylor & Francis, 2000.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Conte, Giuseppe, Claude H. Moog e Anna Maria Perdon. Algebraic Methods for Nonlinear Control Systems. London: Springer London, 2007. http://dx.doi.org/10.1007/978-1-84628-595-0.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Glad, Torkel. Control theory: Multivariable and nonlinear methods. London: Taylor & Francis, 2000.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Lu, X. Y. Differential algebraic methods in nonlinear control theory. Manchester: UMIST, 1993.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Turner, Matthew C., e Declan G. Bates, eds. Mathematical Methods for Robust and Nonlinear Control. London: Springer London, 2007. http://dx.doi.org/10.1007/978-1-84800-025-4.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Max-plus methods for nonlinear control and estimation. Boston: Birkhäuser, 2006.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Max-plus methods for nonlinear control and estimation. Boston, MA: Birkhauser, 2005.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Martínez-Guerra, Rafael, Oscar Martínez-Fuentes e Juan Javier Montesinos-García. Algebraic and Differential Methods for Nonlinear Control Theory. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-12025-2.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Allgüwer, F., P. Fleming, P. Kokotovic, A. B. Kurzhanski, H. Kwakernaak, A. Rantzer, J. N. Tsitsiklis, Francesco Bullo e Kenji Fujimoto, eds. Lagrangian and Hamiltonian Methods for Nonlinear Control 2006. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-73890-9.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Fliess, M., e M. Hazewinkel, eds. Algebraic and Geometric Methods in Nonlinear Control Theory. Dordrecht: Springer Netherlands, 1986. http://dx.doi.org/10.1007/978-94-009-4706-1.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.

Capítulos de livros sobre o assunto "Nonlinear control methods"

1

Vinagre, Blas M., Inés Tejado e S. Hassan HosseinNia. "Nonlinear control methods". In Applications in Control, editado por Ivo Petráš, 1–28. Berlin, Boston: De Gruyter, 2019. http://dx.doi.org/10.1515/9783110571745-001.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Lantos, Béla, e Lőrinc Márton. "Basic Nonlinear Control Methods". In Nonlinear Control of Vehicles and Robots, 11–80. London: Springer London, 2011. http://dx.doi.org/10.1007/978-1-84996-122-6_2.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Grimble, Michael J., e Paweł Majecki. "Nonlinear Estimation Methods: Polynomial Systems Approach". In Nonlinear Industrial Control Systems, 553–96. London: Springer London, 2020. http://dx.doi.org/10.1007/978-1-4471-7457-8_12.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Wagg, David, e Simon Neild. "Approximate Methods for Analysing Nonlinear Vibrations". In Nonlinear Vibration with Control, 145–209. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-10644-1_4.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Westphal, Louis C. "Linearization methods for nonlinear systems". In Handbook of Control Systems Engineering, 745–806. Boston, MA: Springer US, 2001. http://dx.doi.org/10.1007/978-1-4615-1533-3_33.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Raković, Saša V. "Set Theoretic Methods in Model Predictive Control". In Nonlinear Model Predictive Control, 41–54. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-01094-1_3.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Kawski, Matthias. "Lie Algebraic Methods in Nonlinear Control". In Encyclopedia of Systems and Control, 631–36. London: Springer London, 2015. http://dx.doi.org/10.1007/978-1-4471-5058-9_79.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Krener, A. J. "Differential Geometric Methods in Nonlinear Control". In Encyclopedia of Systems and Control, 275–84. London: Springer London, 2015. http://dx.doi.org/10.1007/978-1-4471-5058-9_80.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Kawski, Matthias. "Lie Algebraic Methods in Nonlinear Control". In Encyclopedia of Systems and Control, 1–7. London: Springer London, 2014. http://dx.doi.org/10.1007/978-1-4471-5102-9_79-1.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Krener, A. J. "Differential Geometric Methods in Nonlinear Control". In Encyclopedia of Systems and Control, 1–14. London: Springer London, 2013. http://dx.doi.org/10.1007/978-1-4471-5102-9_80-1.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.

Trabalhos de conferências sobre o assunto "Nonlinear control methods"

1

Markley, F. Landis, John Crassidis e Yang Cheng. "Nonlinear Attitude Filtering Methods". In AIAA Guidance, Navigation, and Control Conference and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2005. http://dx.doi.org/10.2514/6.2005-5927.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Bugajski, Daniel, Dale Enns e Allen Tannenbaum. "Synthesis Methods for Robust Nonlinear Control". In 1993 American Control Conference. IEEE, 1993. http://dx.doi.org/10.23919/acc.1993.4792914.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Fenili, André. "Nonlinear Control of a Rotating Smart Beam". In XXXVIII Iberian-Latin American Congress on Computational Methods in Engineering. Florianopolis, Brazil: ABMEC Brazilian Association of Computational Methods in Engineering, 2017. http://dx.doi.org/10.20906/cps/cilamce2017-0230.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Harinath, Eranda, Lucas C. Foguth, Joel A. Paulson e Richard D. Braatz. "Nonlinear model predictive control using polynomial optimization methods". In 2016 American Control Conference (ACC). IEEE, 2016. http://dx.doi.org/10.1109/acc.2016.7524882.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Zhirabok, Alexey N., e Sergey A. Usoltsev. "Linear methods for fault diagnosis in nonlinear systems". In 2001 European Control Conference (ECC). IEEE, 2001. http://dx.doi.org/10.23919/ecc.2001.7076106.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Taylor, James H. "Robust Nonlinear Control Based on Describing Function Methods". In ASME 1998 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 1998. http://dx.doi.org/10.1115/imece1998-0299.

Texto completo da fonte
Resumo:
Abstract The robust control problem for nonlinear systems is discussed from the standpoint of the amplitude sensitivity of the nonlinear plant and final control system. Failure to recognize and accommodate this factor may give rise to nonlinear control systems that behave differently for small versus large input excitation, or perhaps exhibit limit cycles or instability. Sinusoidal-input describing functions (sidfs) are shown to be effective in dealing with amplitude sensitivity in two areas: modeling (providing plant models that achieve an excellent trade-off between conservatism and robustness) and nonlinear control synthesis. In addition, sidf-based modeling and synthesis approaches are broadly applicable. Several practical SIDF-based nonlinear compensator synthesis approaches are presented and illustrated via application to a position control problem.
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Muske, K. R., J. W. Howse e G. A. Hansen. "Lagrangian solution methods for nonlinear model predictive control". In Proceedings of 2000 American Control Conference (ACC 2000). IEEE, 2000. http://dx.doi.org/10.1109/acc.2000.877020.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Zwierzewicz, Zenon. "Adaptive tracking control of uncertain SISO nonlinear systems". In 2012 17th International Conference on Methods & Models in Automation & Robotics (MMAR). IEEE, 2012. http://dx.doi.org/10.1109/mmar.2012.6347863.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Kouzoupis, D., H. J. Ferreau, H. Peyrl e M. Diehl. "First-order methods in embedded nonlinear model predictive control". In 2015 European Control Conference (ECC). IEEE, 2015. http://dx.doi.org/10.1109/ecc.2015.7330932.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Rigatos, Gerasimos, Pierluigi Siano e Ivan Arsie. "Nonlinear control of valves in diesel engines using the derivative-free nonlinear Kalman Filter". In INTERNATIONAL CONFERENCE OF COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING 2014 (ICCMSE 2014). AIP Publishing LLC, 2014. http://dx.doi.org/10.1063/1.4897716.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.

Relatórios de organizações sobre o assunto "Nonlinear control methods"

1

Malisoff, Michael A., e Peter R. Wolenski. Theory, Methods, and Applications of Nonlinear Control. Fort Belvoir, VA: Defense Technical Information Center, agosto de 2012. http://dx.doi.org/10.21236/ada582269.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Shamma, Jeff S. Set-Valued Methods for Robust Nonlinear Control. Fort Belvoir, VA: Defense Technical Information Center, dezembro de 1998. http://dx.doi.org/10.21236/ada383800.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Mezic, Igor. Nonlinear Dynamics and Ergodic Theory Methods in Control. Fort Belvoir, VA: Defense Technical Information Center, dezembro de 2005. http://dx.doi.org/10.21236/ada451673.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Mezic, Igor. Nonlinear Dynamics and Ergodic Theory Methods in Control. Fort Belvoir, VA: Defense Technical Information Center, janeiro de 2003. http://dx.doi.org/10.21236/ada418975.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Fitzpatrick, Ben G. Idempotent Methods for Continuous Time Nonlinear Stochastic Control. Fort Belvoir, VA: Defense Technical Information Center, setembro de 2012. http://dx.doi.org/10.21236/ada580394.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Rugh, Wilson J. Analysis and Design Methods for Nonlinear Control Systems. Fort Belvoir, VA: Defense Technical Information Center, março de 1990. http://dx.doi.org/10.21236/ada221621.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Banks, H. T. Computational Methods for Control of Nonlinear Fluid/Structure Problems. Fort Belvoir, VA: Defense Technical Information Center, abril de 1997. http://dx.doi.org/10.21236/ada329638.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Ydstie, B. E. Multivariable and distributed control of nonlinear chemical processes using adaptive methods. Office of Scientific and Technical Information (OSTI), janeiro de 1988. http://dx.doi.org/10.2172/5469742.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Tannenbaum, Allen R. Operator Theoretic Methods in the Control of Distributed and Nonlinear Systems. Fort Belvoir, VA: Defense Technical Information Center, novembro de 1993. http://dx.doi.org/10.21236/ada274160.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Ydstie, B. E. Multivariable and distributed control of nonlinear chemical processes using adaptive methods. Final report, February 1, 1985--January 31, 1988. Office of Scientific and Technical Information (OSTI), dezembro de 1988. http://dx.doi.org/10.2172/10136602.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Oferecemos descontos em todos os planos premium para autores cujas obras estão incluídas em seleções literárias temáticas. Contate-nos para obter um código promocional único!

Vá para a bibliografia