Siga este link para ver outros tipos de publicações sobre o tema: Noncommutative algebras.

Teses / dissertações sobre o tema "Noncommutative algebras"

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Veja os 50 melhores trabalhos (teses / dissertações) para estudos sobre o assunto "Noncommutative algebras".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Veja as teses / dissertações das mais diversas áreas científicas e compile uma bibliografia correta.

1

Rennie, Adam Charles. "Noncommutative spin geometry". Title page, contents and introduction only, 2001. http://web4.library.adelaide.edu.au/theses/09PH/09phr4163.pdf.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Hartman, Gregory Neil. "Graphs and Noncommutative Koszul Algebras". Diss., Virginia Tech, 2002. http://hdl.handle.net/10919/27156.

Texto completo da fonte
Resumo:
A new connection between combinatorics and noncommutative algebra is established by relating a certain class of directed graphs to noncommutative Koszul algebras. The directed graphs in this class are called full graphs and are defined by a set of criteria on the edges. The structural properties of full graphs are studied as they relate to the edge criteria. A method is introduced for generating a Koszul algebra Lambda from a full graph G. The properties of Lambda are examined as they relate to the structure of G, with special attention being given to the construction of a projective resolution of certain semisimple Lambda-modules based on the structural properties of G. The characteristics of the Koszul algebra Lambda that is derived from the product of two full graphs G' and G' are studied as they relate to the properties of the Koszul algebras Lambda' and Lambda' derived from G' and G'.
Ph. D.
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Schoenecker, Kevin J. "An infinite family of anticommutative algebras with a cubic form". Columbus, Ohio : Ohio State University, 2007. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1187185559.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Russell, Ewan. "Prime ideals in quantum algebras". Thesis, University of Edinburgh, 2009. http://hdl.handle.net/1842/3450.

Texto completo da fonte
Resumo:
The central objects of study in this thesis are quantized coordinate algebras. These algebras originated in the 1980s in the work of Drinfeld and Jumbo and are noncommutative analogues of coordinate rings of algebraic varieties. The organic nature by which these algebras arose is of great interest to algebraists. In particular, investigating ring theoretic properties of these noncommutative algebras in comparison to the properties already known about their classical (commutative) counterparts proves to be a fruitful process. The prime spectrum of an algebra has always been seen as an important key to understanding its fundamental structure. The search for prime spectra is a central focus of this thesis. Our focus is mainly on Quantum Grassmannian subalgebras of quantized coordinate rings of Matrices of size m x n (denoted Oq(Mm;n)). Quantum Grassmannians of size m x n are denoted Gq(m; n) and are the subalgebras generated by the maximal quantum minors of Oq(Mm;n). In Chapter 2 we look at the simplest interesting case, namely the 2 x 4 Quantum Grassmannian (Gq(2; 4)), and we identify the H-primes and automorphism group of this algebra. Chapter 3 begins with a very important result concerning the dehomogenisation isomorphism linking Gq(m; n) and Oq(Mm;n¡m). This result is applied to help to identify H-prime spectra of Quantum Grassmannians. Chapter 4 focuses on identifying the number of H-prime ideals in the 2xn Quan- tum Grassmannian. We show the link between Cauchon fillings of subpartitions and H-prime ideals. In Chapter 5, we look at methods of ordering the generating elements of Quantum Grassmannians and prove the result that Quantum Grassmannians are Quantum Graded Algebras with a Straightening Law is maintained on using one of these alternative orderings. Chapter 6 looks at the Poisson structure on the commutative coordinate ring, G(2; 4) encoded by the noncommutative quantized algebra Gq(2; 4). We describe the symplectic ideals of G(2; 4) based on this structure. Finally in Chapter 7, we present an analysis of the 2 x 2 Reflection Equation Algebra and its primes. This algebra is obtained from the quantized coordinate ring of 2 x 2 matrices, Oq(M2;2).
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Phan, Christopher Lee 1980. "Koszul and generalized Koszul properties for noncommutative graded algebras". Thesis, University of Oregon, 2009. http://hdl.handle.net/1794/10367.

Texto completo da fonte
Resumo:
xi, 95 p. : ill. A print copy of this thesis is available through the UO Libraries. Search the library catalog for the location and call number.
We investigate some homological properties of graded algebras. If A is an R -algebra, then E (A) := Ext A ( R, R ) is an R-algebra under the cup product and is called the Yoneda algebra. (In most cases, we assume R is a field.) A well-known and widely-studied condition on E(A) is the Koszul property. We study a class of deformations of Koszul algebras that arises from the study of equivariant cohomology and algebraic groups and show that under certain circumstances these deformations are Poincaré-Birkhoff-Witt deformations. Some of our results involve the [Special characters omitted] property, recently introduced by Cassidy and Shelton, which is a generalization of the Koszul property. While a Koszul algebra must be quadratic, a [Special characters omitted] algebra may have its ideal of relations generated in different degrees. We study the structure of the Yoneda algebra corresponding to a monomial [Special characters omitted.] algebra and provide an example of a monomial [Special characters omitted] algebra whose Yoneda algebra is not also [Special characters omitted]. This example illustrates the difficulty of finding a [Special characters omitted] analogue of the classical theory of Koszul duality. It is well-known that Poincaré-Birkhoff-Witt algebras are Koszul. We find a [Special characters omitted] analogue of this theory. If V is a finite-dimensional vector space with an ordered basis, and A := [Special characters omitted] (V)/I is a connected-graded algebra, we can place a filtration F on A as well as E (A). We show there is a bigraded algebra embedding Λ: gr F E (A) [Special characters omitted] E (gr F A ). If I has a Gröbner basis meeting certain conditions and gr F A is [Special characters omitted], then Λ can be used to show that A is also [Special characters omitted]. This dissertation contains both previously published and co-authored materials.
Committee in charge: Brad Shelton, Chairperson, Mathematics; Victor Ostrik, Member, Mathematics; Christopher Phillips, Member, Mathematics; Sergey Yuzvinsky, Member, Mathematics; Van Kolpin, Outside Member, Economics
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Meyer, Jonas R. "Noncommutative Hardy algebras, multipliers, and quotients". Diss., University of Iowa, 2010. https://ir.uiowa.edu/etd/712.

Texto completo da fonte
Resumo:
The principal objects of study in this thesis are the noncommutative Hardy algebras introduced by Muhly and Solel in 2004, also called simply ``Hardy algebras,'' and their quotients by ultraweakly closed ideals. The Hardy algebras form a class of nonselfadjoint dual operator algebras that generalize the classical Hardy algebra, the noncommutative analytic Toeplitz algebras introduced by Popescu in 1991, and other classes of operator algebras studied in the literature. It is known that a quotient of a noncommutative analytic Toeplitz algebra by a weakly closed ideal can be represented completely isometrically as the compression of the algebra to the complement of the range of the ideal, but there is no known general extension of this result to Hardy algebras. An analogous problem on representing quotients of Hardy algebras as compressions of images of induced representations is considered in Chapter 2. Using Muhly and Solel's generalization of Beurling's theorem together with factorizations of weakly continuous linear functionals on infinite multiplicity operator spaces, it is shown that compressing onto the complement of the range of an ultraweakly closed ideal in the space of an infinite multiplicity induced representation yields a completely isometric isomorphism of the quotient. A generalization of Pick's interpolation theorem for elements of Hardy algebras evaluated on their spaces of representations was proved by Muhly and Solel. In Chapter 3, a general theory of reproducing kernel W*-correspondences and their multipliers is developed, generalizing much of the classical theory of reproducing kernel Hilbert space. As an application, it is shown using the generalization of Pick's theorem that the function space representation of a Hardy algebra is isometrically isomorphic (with its quotient norm) to the multiplier algebra of a reproducing kernel W*-correspondence constructed from a generalization of the Szegõ kernel on the unit disk. In Chapter 4, properties of polynomial approximation and analyticity of these functions are studied, with special attention given to the noncommutative analytic Toeplitz algebras. In the final chapter, the canonical curvatures for a class of Hermitian holomorphic vector bundles associated with a C*-correspondence are computed. The Hermitian metrics are closely related to the generalized Szegõ kernels, and when specialized to the disk, the bundle is the Cowen-Douglas bundle associated with the backward shift operator.
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Uhl, Christine. "Quantum Drinfeld Hecke Algebras". Thesis, University of North Texas, 2016. https://digital.library.unt.edu/ark:/67531/metadc862764/.

Texto completo da fonte
Resumo:
Quantum Drinfeld Hecke algebras extend both Lusztig's graded Hecke algebras and the symplectic reflection algebras of Etingof and Ginzburg to the quantum setting. A quantum (or skew) polynomial ring is generated by variables which commute only up to a set of quantum parameters. Certain finite groups may act by graded automorphisms on a quantum polynomial ring and quantum Drinfeld Hecke algebras deform the natural semi-direct product. We classify these algebras for the infinite family of complex reflection groups acting in arbitrary dimension. We also classify quantum Drinfeld Hecke algebras in arbitrary dimension for the infinite family of mystic reflection groups of Kirkman, Kuzmanovich, and Zhang, who showed they satisfy a Shephard-Todd-Chevalley theorem in the quantum setting. Using a classification of automorphisms of quantum polynomial rings in low dimension, we develop tools for studying quantum Drinfeld Hecke algebras in 3 dimensions. We describe the parameter space of such algebras using special properties of the quantum determinant in low dimension; although the quantum determinant is not a homomorphism in general, it is a homomorphism on the finite linear groups acting in dimension 3.
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Zhao, Xiangui. "Groebner-Shirshov bases in some noncommutative algebras". London Mathematical Society, 2014. http://hdl.handle.net/1993/24315.

Texto completo da fonte
Resumo:
Groebner-Shirshov bases, introduced independently by Shirshov in 1962 and Buchberger in 1965, are powerful computational tools in mathematics, science, engineering, and computer science. This thesis focuses on the theories, algorithms, and applications of Groebner-Shirshov bases for two classes of noncommutative algebras: differential difference algebras and skew solvable polynomial rings. This thesis consists of three manuscripts (Chapters 2--4), an introductory chapter (Chapter 1) and a concluding chapter (Chapter 5). In Chapter 1, we introduce the background and the goals of the thesis. In Chapter 2, we investigate the Gelfand-Kirillov dimension of differential difference algebras. We find lower and upper bounds of the Gelfand-Kirillov dimension of a differential difference algebra under some conditions. We also give examples to demonstrate that our bounds are sharp. In Chapter 3, we generalize the Groebner-Shirshov basis theory to differential difference algebras with respect to any left admissible ordering and develop the Groebner-Shirshov basis theory of finitely generated free modules over differential difference algebras. By using the theory we develop, we present an algorithm to compute the Gelfand-Kirillov dimensions of finitely generated modules over differential difference algebras. In Chapter 4, we first define skew solvable polynomial rings, which are generalizations of solvable polynomial algebras and (skew) PBW extensions. Then we present a signature-based algorithm for computing Groebner-Shirshov bases in skew solvable polynomial rings over fields. Our algorithm can detect redundant reductions and therefore it is more efficient than the traditional Buchberger algorithm. Finally, in Chapter 5, we summarize our results and propose possible future work.
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Oblomkov, Alexei. "Double affine Hecke algebras and noncommutative geometry". Thesis, Massachusetts Institute of Technology, 2005. http://hdl.handle.net/1721.1/31165.

Texto completo da fonte
Resumo:
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mathematics, 2005.
Includes bibliographical references (p. 93-96).
In the first part we study Double Affine Hecke algebra of type An-1 which is important tool in the theory of orthogonal polynomials. We prove that the spherical subalgebra eH(t, 1)e of the Double Affine Hecke algebra H(t, 1) of type An-1 is an integral Cohen-Macaulay algebra isomorphic to the center Z of H(t, 1), and H(t, 1)e is a Cohen-Macaulay eH(t, 1)e-module with the property H(t, 1) = EndeH(t,tl)(H(t, 1)e). This implies the classification of the finite dimensional representations of the algebras. In the second part we study the algebraic properties of the five-parameter family H(tl, t2, t3, t4; q) of double affine Hecke algebras of type CVC1, which control Askey- Wilson polynomials. We show that if q = 1, then the spectrum of the center of H is an affine cubic surface C, obtained from a projective one by removing a triangle consisting of smooth points. Moreover, any such surface is obtained as the spectrum of the center of H for some values of parameters. We prove that the only fiat de- formations of H come from variations of parameters. This explains from the point of view of noncommutative geometry why one cannot add more parameters into the theory of Askey-Wilson polynomials. We also prove several results on the universality of the five-parameter family H(tl, t2, t3, t4; q) of algebras.
by Alexei Oblomkov.
Ph.D.
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Gohm, Rolf. "Noncommutative stationary processes /". Berlin [u.a.] : Springer, 2004. http://www.loc.gov/catdir/enhancements/fy0813/2004103932-d.html.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
11

Nordstrom, Hans Erik. "Associated primes over Ore extensions and generalized Weyl algebras /". view abstract or download file of text, 2005. http://wwwlib.umi.com/cr/uoregon/fullcit?p3181118.

Texto completo da fonte
Resumo:
Thesis (Ph. D.)--University of Oregon, 2005.
Typescript. Includes vita and abstract. Includes bibliographical references (leaves 48-49). Also available for download via the World Wide Web; free to University of Oregon users.
Estilos ABNT, Harvard, Vancouver, APA, etc.
12

at, grosse@doppler thp univie ac. "On a Noncommutative Deformation of the Connes--Kreimer Algebra". ESI preprints, 2001. ftp://ftp.esi.ac.at/pub/Preprints/esi1065.ps.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
13

Davies, Andrew Phillip. "Cocycle twists of algebras". Thesis, University of Manchester, 2014. https://www.research.manchester.ac.uk/portal/en/theses/cocycle-twists-of-algebras(23710bc8-abdf-4b8d-9836-111164fefc11).html.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
14

Hwang, Junho. "On the stability and moduli of noncommutative algebras". Thesis, University of British Columbia, 2016. http://hdl.handle.net/2429/57948.

Texto completo da fonte
Resumo:
This dissertation studies stability of 3-dimensional quadratic AS-regular algebras and their moduli. A quadratic algebra defined by a regular triple (E, L, σ) is stable if there is no node or line component of E fixed by σ. We first prove stability of the twisted homogeneous coordinate ring B(E, L, σ), then lift stability to that of A(E, L, σ) by analyzing the central element c₃ where B = A/(c₃). We study a coarse moduli space for each type, A, B, E, H, S. S-equivalence of strictly semistable algebras is studied. We compute automorphisms of AS-regular algebras and of those that appear in the boundary of the moduli. We found complete DM-stacks for 2,3-truncated algebras. Type B algebra as Zhang twist of type A is studied. We found exceptional algebras which appear in the exceptional divisor of a blowing-up at a degenerate algebra in the moduli of 3-truncations. 2-unstable algebras are also studied.
Science, Faculty of
Mathematics, Department of
Graduate
Estilos ABNT, Harvard, Vancouver, APA, etc.
15

Masmali, Ibtisam Ali. "Hopf algebra and noncommutative differential structures". Thesis, Swansea University, 2010. https://cronfa.swan.ac.uk/Record/cronfa42676.

Texto completo da fonte
Resumo:
In this thesis I will study noncommutative differential geometry, after the style of Connes and Woronowicz. In particular two examples of differential calculi on Hopf algebras are considered, and their associated covariant derivatives and Riemannian geometry. These are on the Heisenberg group, and on the finite group A4. I consider bimodule connections after the work of Madore. In the last chapter noncommutative fibrations are considerd, with an application to the Leray spectral sequence. NOTATION. In this thesis equations are numbered as round brackets (), where (a.b) denotes equation b in chapter a, and references are indicated by square brackets []. This thesis has been typeset using Latex, and some figures using the Visio program.
Estilos ABNT, Harvard, Vancouver, APA, etc.
16

Griesenauer, Erin. "Algebras of cross sections". Diss., University of Iowa, 2016. https://ir.uiowa.edu/etd/2086.

Texto completo da fonte
Resumo:
My research studies algebras of holomorphic functions from $d$-tuples of $n\times n$- matrices, $M_n(\bC)^d$, to $M_n(\bC)$. In particular, I study the holomorphic functions that can be approximated by \emph{polynomial matrix concomitants}, that is polynomial maps from $M_n(\bC)^d$ to $M_n(\bC)$ that satisfy the relationship \[ f(g^{-1}\fz g) = g^{-1}f(\fz)g \] for every $\fz \in M_n(\bC)^d$ and $g\in GL_n(\bC)$. In a sense, these are the polynomial maps that “remember” the structure of the $d$-tuple $\fz$. My first result is that these holomorphic matrix concomitants can be identified with holomorphic cross sections of certain matrix bundles. A holomorphic matrix bundle is a fibred space in which every fibre is $M_n(\bC)$ and the fibres are glued together in such a way that the total space has a holomorphic structure. Once the identification between holomorphic cross sections and holomorphic concomitants is established, the structure of the matrix bundle is used to endow the algebra of continuous cross sections with a $C^*$-algebra structure. Then we study the subalgebra of cross sections that can be approximated by polynomial concomitants. By identifying the matrix concomitants with cross sections, we are able to prove interesting results about these algebras.
Estilos ABNT, Harvard, Vancouver, APA, etc.
17

Brazfield, Christopher Jude. "Artin-Schelter regular algebras of global dimension 4 with two degree one generators /". view abstract or download file of text, 1999. http://wwwlib.umi.com/cr/uoregon/fullcit?p9947969.

Texto completo da fonte
Resumo:
Thesis (Ph. D.)--University of Oregon, 1999.
Typescript. Includes vita and abstract. Includes bibliographical references (leaves 103-105). Also available for download via the World Wide Web; free to University of Oregon users. Address: http://wwwlib.umi.com/cr/uoregon/fullcit?p9947969.
Estilos ABNT, Harvard, Vancouver, APA, etc.
18

Brandão, Junior Antonio Pereira. "Polinomios centrais para algebras graduadas". [s.n.], 2006. http://repositorio.unicamp.br/jspui/handle/REPOSIP/306381.

Texto completo da fonte
Resumo:
Orientador: Plamen Koshlukov
Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatisticas e Computação Cientifica
Made available in DSpace on 2018-08-07T02:02:57Z (GMT). No. of bitstreams: 1 BrandaoJunior_AntonioPereira_D.pdf: 1947392 bytes, checksum: a2dae6805cd5224410f82d2eaaa472fc (MD5) Previous issue date: 2006
Resumo: Neste trabalho apresentamos um estudo sobre polinômios centrais graduados e polinômios centrais com involução para algumas álgebras importantes na PI-teoria sobre corpos infinitos. Mais precisamente, descrevemos os polinômios centrais Z2-graduados para as álgebras M2 (K) (matrizes 2 x 2 sobre um corpo K), Ml,l (5), onde 5 é uma álgebra supercomutativa (em particular, obtemos o caso Ml,l(E)), e E 0 E. Para Ml,1(5), apresentamos antes uma classificação em termos de identidades Z2-graduadas. Aqui E é a álgebra de Grassmann de dimensão infinita com unidade e Ml,1(5) é a subálgebra de M2(5), cujos elementos são as matrizes que têm a diagonal principal com elementos de 50, a componente par (central) de 5, e a diagonal secundária com elementos de 51, a componente ímpar (anticomutativa) de 5. Descrevemos também os polinômios centrais graduados para as álgebras Mn(K) (matrizes nxn sobre K), considerando suas graduações naturais pelos grupos cíclicos, e finalménte os polinômios centrais com involução para M2(K), considerando as involuções transposta e simplética
Abstract: In this thesis we study graded central polynomials and central polynomials with involution for some important algebras in the theory of algebras with polynomial identities, over infinite fields. Namely we describe the Z2-graded central polynomials for the algebras M2(K) (the 2 x 2 matrices over the field K), Ml,1(5), where 5 is an arbitrary supercommutative algebra. In particular we obtain the cases Ml,l (E), and furthermore E 0 E. For the case Ml,l (5) we first give a classification in terms of Z2-graded identities. Here E stands for the infinite dimensional Grassmann algebra with 1. AIso Ml,1(5) is the subalgebra of M2(5) with elements the matrices whose main diagonal has entries from 50, the even (central) component of 5, and off-diagonal entries from 51, the odd (anticommutative) component of 5. We also describe the graded central polynomials for the algebras Mn(K), the n x n matrices over K, considering their natural gradings by cyclic groups, and finally the central polynomials with involution for M2 (K), considering the transpose and the symplectic involutions
Doutorado
Algebra
Doutor em Matemática
Estilos ABNT, Harvard, Vancouver, APA, etc.
19

Goetz, Peter D. "The noncommutative algebraic geometry of quantum projective spaces /". view abstract or download file of text, 2003. http://wwwlib.umi.com/cr/uoregon/fullcit?p3102165.

Texto completo da fonte
Resumo:
Thesis (Ph. D.)--University of Oregon, 2003.
Typescript. Includes vita and abstract. Includes bibliographical references (leaves 106-108). Also available for download via the World Wide Web; free to University of Oregon users.
Estilos ABNT, Harvard, Vancouver, APA, etc.
20

Snyman, Mathys Machiel. "Ergodic properties of noncommutative dynamical systems". Diss., University of Pretoria, 2013. http://hdl.handle.net/2263/40351.

Texto completo da fonte
Resumo:
In this dissertation we develop aspects of ergodic theory for C*-dynamical systems for which the C*-algebras are allowed to be noncommutative. We define four ergodic properties, with analogues in classic ergodic theory, and study C*-dynamical systems possessing these properties. Our analysis will show that, as in the classical case, only certain combinations of these properties are permissable on C*-dynamical systems. In the second half of this work, we construct concrete noncommutative C*-dynamical systems having various permissable combinations of the ergodic properties. This shows that, as in classical ergodic theory, these ergodic properties continue to be meaningful in the noncommutative case, and can be useful to classify and analyse C*-dynamical systems.
Dissertation (MSc)--University of Pretoria, 2013.
gm2014
Mathematics and Applied Mathematics
unrestricted
Estilos ABNT, Harvard, Vancouver, APA, etc.
21

Vitoria, Jorge. "Categorical and geometric aspects of noncommutative algebras : mutations, tails and perversities". Thesis, University of Warwick, 2010. http://wrap.warwick.ac.uk/35651/.

Texto completo da fonte
Resumo:
This thesis concerns some interactions between algebraic geometry and noncommutative algebra in a categorical language. This interplay allows noncommutative constructions of geometric motivation and we explore their structure. In chapters 1 and 2 we survey the main ideas, contextualising this area and introducing the main concepts and results used later in the thesis. These include Morita theory for derived categories, tilting t-structures with respect to torsion theories and generalities on noncommutative projective geometry. Chapter 3 is devoted to prove that, under certain conditions, mutations for quivers with potentials induce derived equivalences on the corresponding Jacobian algebras. We give examples of such Jacobian algebras and show how they occur naturally in geometry. In chapter 4 we turn our attention to to a class of skew-polynomial algebras and explore ways of classifying their noncommutative projective geometry, studying graded Morita equivalences, point varieties and birational equivalences. Finally, chapter 5 contains an algebraic description of perverse coherent t-structures for the derived category of coherent sheaves on a complex projective variety. Furthermore we define analogous structures in adequate noncommutative settings.
Estilos ABNT, Harvard, Vancouver, APA, etc.
22

Silva, Diogo Diniz Pereira da Silva e. "Algebras graduadas e identidades polinomiais graduadas". [s.n.], 2007. http://repositorio.unicamp.br/jspui/handle/REPOSIP/306371.

Texto completo da fonte
Resumo:
Orientador: Plamen Emilov Kochloukov
Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica
Made available in DSpace on 2018-08-08T17:42:03Z (GMT). No. of bitstreams: 1 Silva_DiogoDinizP_M.pdf: 729460 bytes, checksum: d3bd0f5d35d357ca516d80c06f0ee23f (MD5) Previous issue date: 2007
Resumo: Neste trabalho estudamos algebras graduadas e identidades polinomiais graduadas. Foram abordados dois tipos de problemas: determinar as possíveis graduações de uma determinada algebra; encontrar uma base para as identidades graduadas de uma algebra. Começamos com as definiçõese resultados básicos de álgebras,álgebras graduadas, identidades polinomiais (graduadas), etc. Em seguida fornecemos uma descrição das possíveis graduações da algebra das matrizes n x n sobre um corpo algebricamente fechado, e da algebra das matrizes triangulares superiores quando o corpo é algebricamente fechado, de característica 0 e o grupo é abeliano e fnito. Depois estudamos as identidades graduadas da álgebra das matrizes n x n sobre um corpo K e das álgebras M11(E) e E ? E onde E é a álgebra exterior (ou de Grassmann) de dimensão infinita
Abstract: In this work we study graded algebras and graded polynomial identities. We study two types of problems: finding the possible gradings on a given algebra, and finding a basis forthe graded identities of a given algebra. We begin with the basic definitions and results onalgebras, graded algebras, (graded) polynomial identities, etc. We give a description of thepossible gradings on the matrix algebra over an algebraically closed filed, and of the upper triangular matrices when the field is algebraically closed of characteristic 0, and the group is abelian and finite. Then we study the graded identities of the matrix algebra over a field K and of the algebras M11(E) and E ? E where E is the infinite dimensional Grassmann (or exterior) algebra
Mestrado
Matematica
Mestre em Matemática
Estilos ABNT, Harvard, Vancouver, APA, etc.
23

Alves, Sergio Mota. "PI equivalencia e não equivalencia de algebras". [s.n.], 2006. http://repositorio.unicamp.br/jspui/handle/REPOSIP/306373.

Texto completo da fonte
Resumo:
Orientador: Plamen Emilov Koshlukov
Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatisticas e Computação Cientifica
Made available in DSpace on 2018-08-07T19:30:45Z (GMT). No. of bitstreams: 1 Alves_SergioMota_D.pdf: 708263 bytes, checksum: 1d9ec0b24db06ea81853a6e7d6794b18 (MD5) Previous issue date: 2006
Resumo: As álgebras verbalmente primas são bem conhecidas em característica 0, já sobre corpos de característica p > 2 pouco sabemos sobre elas. Nesse trabalho vamos discutir algumas diferenças entre estes dois casos de característica sobre corpos infinitos. Iniciamos mostrando que o Teorema do Produto Tensorial de Kemer e duas de suas conseqüências não podem ser transportados para corpos infinitos de característica positiva p > 2. Em seguida, discutiremos algumas propriedades envolvendo as álgebras Aa;b, a saber, mostraremos que as álgebras Aa;b e Ma+b(E) não são PI-equivalentes e que as álgebras Aa;a e Ma;a (E) ­ não são PI-equivalentes, e apresentaremos um resultado que enfatiza a importância dos monômios na determinação do ideal das identidades das álgebras Zn £ Z2-graduadas Aa;b em característica positiva. Por ¯m, apresentaremos modelos genéricos e calcularemos a dimensão de Gelfand-Kirillov para as álgebras relativamente livres de posto m nas variedades determinadas pelas álgebras E ­ E, Aa;b e Ma;a(E) ­ E. Como conseqüência, obteremos a prova da não PI- equivalência entre álgebras importantes para PI-teoria em característica positiva
Abstract: The verbally prime algebras are well understood in characteristic 0 while over a field of characteristic p > 2 little is known about them. In this work we discuss some sharp di®erences between these two cases for the characteristic. First we show that the so-called Kemer's Tensor Product Theorem and two of its consequences cannot be extended for infnite fields of positive characteristic p > 2. Afterwards we prove that the algebras Aa;b and Ma+b(E) are not PI equivalent, while the algebras Aa;a and Ma;a(E) ­ E are PI equivalent. Moreover we obtain a result showing the importance of the monomials in the Zn £ Z2-graded T-ideal of the algebra Aa;b. Finally, we exhibit constructions of generic models. By using these models we compute the Gelfand-Kirillov dimension of the relatively free algebras of rank m in the varieties generated by E ­E, Aa;b, and Ma;a(E)­E. As consequence we obtain the PI non equivalence of important algebras for the PI theory in positive characteristic
Doutorado
Algebra
Doutor em Matemática
Estilos ABNT, Harvard, Vancouver, APA, etc.
24

Kerr, David. "Pressure for automorphisms of exact C*-algebras and a noncommutative variational principle". Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2001. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp05/NQ63696.pdf.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
25

Tiwari, Sharwan Kumar [Verfasser]. "Algorithms in Noncommutative Algebras: Gröbner Bases and Hilbert Series / Sharwan Kumar Tiwari". München : Verlag Dr. Hut, 2017. http://d-nb.info/1149579307/34.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
26

Fidelis, Marcello. "Identidades polinomiais em algebras T-primas". [s.n.], 2005. http://repositorio.unicamp.br/jspui/handle/REPOSIP/306378.

Texto completo da fonte
Resumo:
Orientador: Plamen Emilov Koshlukov
Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica
Made available in DSpace on 2018-08-14T13:33:07Z (GMT). No. of bitstreams: 1 Fidelis_Marcello_D.pdf: 592299 bytes, checksum: dea5983279c32bbe6e1ffd7e1372fcf4 (MD5) Previous issue date: 2005
Resumo: Neste trabalho estudamos os produtos tensoriais de T-ideais T-primos sobre corpos infinitos. O comportamento destes produtos tensoriais sobre corpos de caracteristica zero foi descrito por Kemer. Primeiramente mostramos, usando os m'etodos introduzidos por Regev, que tal descri¸cao vale se nos restringirmos apenas aos polinomios multilineares. Num segundo momento, aplicando identidades graduadas, mostramos que o Teorema sobre o Produto Tensorial 'e falso para os T-ideais das 'algebras M1,1(E) e E E, onde E 'e a 'algebra de Grassmann com dimensao infinita; M1,1(E) consiste das matrizes 2 × 2 sobre E tendo somente elementos pares (i.e. centrais) de E na diagonal principal, e a outra diagonal consistindo de elementos 'impares (anticomutitativos) de E. Entao voltamos nossa atencao para outros produtos tensoriais e estudamos suas respectivas identidades graduadas. Obtivemos novas demonstracoes de alguns dos casos do Teorema sobre o Produto Tensorial de Kemer. Note que estas demonstracoes nao dependem da teoria sobre a estrutura dos T-ideais, mas sao "elementares". Finalmente, usando outra vez identidades polinomiais graduadas, mostramos que o Teorema sobre o Produto Tensorial nao 'e valido em mais um caso: quando o corpo base possui caracteristica positiva. Isto vem para mostrar novamente que a teoria sobre a estrutura dos T-ideais e, essencialmente, uma teoria sobre identidades polinomiais multilineares.
Abstract: In this work we study tensor products of T-prime T-ideals over infinite fields. The behaviour of these tensor products over a field of characteristic zero was described by Kemer. First we show, using methods due to Regev, that such a description holds if one restricts oneself to multilinear polynomials only. Second, applying graded polynomial identities, we prove that the Tensor Product Theorem fails for the T-ideals of the algebras M1,1(E) and E E where E is the infinite dimensional Grassmann algebra; M1,1(E) consists of the 2×2 matrices over E having even (i.e. central) elements of E in the main diagonal, and the other diagonal consisting of odd (anticommuting) elements of E. Then we pass to other tensor products and study the respective graded identities. We obtain new proofs of some cases of Kemer's Tensor Product Theorem. Note that these proofs do not depend on the structure theory of T-ideals but are "elementary" ones. Finally, using graded polynomial identities once again, we show that the Tensor Product Theorem fails in one more case when the base field is of positive characteristic. All this comes to show once more that the structure theory of T-ideals is essentially about the multilinear polynomial identities
Doutorado
Matematica
Doutor em Matemática
Estilos ABNT, Harvard, Vancouver, APA, etc.
27

Brandl, Mary-Katherine. "Primitive and Poisson spectra of non-semisimple twists of polynomial algebras /". view abstract or download file of text, 2001. http://wwwlib.umi.com/cr/uoregon/fullcit?p3024507.

Texto completo da fonte
Resumo:
Thesis (Ph. D.)--University of Oregon, 2001.
Typescript. Includes vita and abstract. Includes bibliographical references (leaf 49). Also available for download via the World Wide Web; free to University of Oregon users.
Estilos ABNT, Harvard, Vancouver, APA, etc.
28

Byrnes, Sean. "Some computational and geometric aspects of generalized Weyl algebras /". [St. Lucia, Qld.], 2004. http://www.library.uq.edu.au/pdfserve.php?image=thesisabs/absthe18765.pdf.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
29

Starling, Charles B. "Actions of Finite Groups on Substitution Tilings and Their Associated C*-algebras". Thèse, Université d'Ottawa / University of Ottawa, 2012. http://hdl.handle.net/10393/20663.

Texto completo da fonte
Resumo:
The goal of this thesis is to examine the actions of finite symmetry groups on aperiodic tilings. To an aperiodic tiling with finite local complexity arising from a primitive substitution rule one can associate a metric space, transformation groupoids, and C*-algebras. Finite symmetry groups of the tiling act on each of these objects and we investigate appropriate constructions on each, namely the orbit space, semidirect product groupoids, and crossed product C*-algebras respectively. Of particular interest are the crossed product C*-algebras; we derive important structure results about them and compute their K-theory.
Estilos ABNT, Harvard, Vancouver, APA, etc.
30

Machado, Gustavo Grings. "Álgebras com identidades polinomais e suas dimensões de Gelfand-Kirillow". [s.n.], 2011. http://repositorio.unicamp.br/jspui/handle/REPOSIP/306380.

Texto completo da fonte
Resumo:
Orientador: Plamen Emilov Koshlukov
Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matemática, Estatística e Computação Cientifica
Made available in DSpace on 2018-08-17T15:30:47Z (GMT). No. of bitstreams: 1 Machado_GustavoGrings_M.pdf: 1211967 bytes, checksum: 772eb43184b0ff273c48ec3a47e9ec93 (MD5) Previous issue date: 2011
Resumo: Neste trabalho estudamos álgebras com identidades polinomiais, focando-se no estudo de álgebras associativas unitárias finitamente geradas. Nosso objetivo é fazer uma demonstração alternativa da não PI-equivalência de álgebras utilizando um invariante conhecido como dimensão de Gelfand-Kirillov. Este invariante tem ganhado importância ultimamente, uma vez que ele é relativamente fácil de calcular e, de certa forma, é capaz de diferenciar o modo com que duas álgebras crescem. Começamos com as definições e resultados básicos de álgebras, álgebras graduadas, identidades polinomiais (graduadas), reduções de identidades polinomiais, etc. Em seguida apresentamos alguns resultados de álgebras com identidades polinomiais finitamente geradas, que permitem uma melhor compreensão dos conceitos de altura e de dimensão de Gelfand-Kirillov. Depois estudamos o Teorema do Produto Tensorial de Kemer (TPT), donde se conclui a PI-equivalência (multilinear) envolvendo álgebras importantes na teoria de PI-álgebras, as álgebras T-primas. Em particular, conclui-se a PI-equivalência sobre corpos de característica zero de M1;1(E) e EE, em que E é a álgebra de Grassmann de um espaço vetorial de base enumerável. Enfim, finalizamos mostrando a não PI-equivalência sobre corpos infinitos de característica positiva maior que dois de M1;1(E) e E E, utilizando-se da dimensão de Gelfand-Kirillov
Abstract: In this work we study algebras with polynomial identities, focusing on the study of finitely generated unitary associative algebras. Our goal is to give an alternative proof of non PI-equivalence of algebras using an invariant known as Gelfand-Kirillov dimension. This invariant has gained importance lately since in many cases it is relatively easy to calculate and, surprisingly, it is able to differentiate the growth of two algebras. We begin with definitions and basic results of algebras, graded algebras, (graded) polynomial identities, reduction of polynomial identities, etc. Afterwards we present some results concerning finitely generated algebras with polynomial identities, which give a better comprehension of the notions of height and Gelfand-Kirillov dimension. Later on we study the Kemer's Tensor Product Theorem (TPT), from which we conclude (multilinear) PI-equivalence involving important algebras in PI-theory, the so called T-prime algebras. In particular, we deduce the PI-equivalence of M1;1(E) and E E over fields of characteristic zero, where E is the infinite dimensional Grassman algebra. Finally, we prove the non PI-equivalence of M1;1(E) and E E over infinite fields of prime characteristic greater than two by means of Gelfand-Kirillov dimension
Mestrado
Algebra
Mestre em Matemática
Estilos ABNT, Harvard, Vancouver, APA, etc.
31

de, Silva Nadish. "Contextuality and noncommutative geometry in quantum mechanics". Thesis, University of Oxford, 2015. http://ora.ox.ac.uk/objects/uuid:1ca8995d-b562-426a-ab89-afab3a18dda2.

Texto completo da fonte
Resumo:
It is argued that the geometric dual of a noncommutative operator algebra represents a notion of quantum state space which differs from existing notions by representing observables as maps from states to outcomes rather than from states to distributions on outcomes. A program of solving for an explicitly geometric manifestation of quantum state space by adapting the spectral presheaf, a construction meant to analyze contextuality in quantum mechanics, to derive simple reconstructions of noncommutative topological tools from their topological prototypes is presented. We associate to each unital C*-algebra A a geometric object--a diagram of topological spaces representing quotient spaces of the noncommutative space underlying A—meant to serve the role of a generalized Gel'fand spectrum. After showing that any functor F from compact Hausdorff spaces to a suitable target category C can be applied directly to these geometric objects to automatically yield an extension F which acts on all unital C*-algebras, we compare a novel formulation of the operator K0 functor to the extension K of the topological K-functor. We then conjecture that the extension of the functor assigning a topological space its topological lattice assigns a unital C*-algebra the topological lattice of its primary ideal spectrum and prove the von Neumann algebraic analogue of this conjecture.
Estilos ABNT, Harvard, Vancouver, APA, etc.
32

Johnston, Ann. "Markov Bases for Noncommutative Harmonic Analysis of Partially Ranked Data". Scholarship @ Claremont, 2011. http://scholarship.claremont.edu/hmc_theses/4.

Texto completo da fonte
Resumo:
Given the result $v_0$ of a survey and a nested collection of summary statistics that could be used to describe that result, it is natural to ask which of these summary statistics best describe $v_0$. In 1998 Diaconis and Sturmfels presented an approach for determining the conditional significance of a higher order statistic, after sampling a space conditioned on the value of a lower order statistic. Their approach involves the computation of a Markov basis, followed by the use of a Markov process with stationary hypergeometric distribution to generate a sample.This technique for data analysis has become an accepted tool of algebraic statistics, particularly for the study of fully ranked data. In this thesis, we explore the extension of this technique for data analysis to the study of partially ranked data, focusing on data from surveys in which participants are asked to identify their top $k$ choices of $n$ items. Before we move on to our own data analysis, though, we present a thorough discussion of the Diaconis–Sturmfels algorithm and its use in data analysis. In this discussion, we attempt to collect together all of the background on Markov bases, Markov proceses, Gröbner bases, implicitization theory, and elimination theory, that is necessary for a full understanding of this approach to data analysis.
Estilos ABNT, Harvard, Vancouver, APA, etc.
33

Nazaikinskii, Vladimir, Bert-Wolfgang Schulze e Boris Sternin. "Quantization methods in differential equations : Chapter 3: Applications of noncommutative analysis to operator algebras on singular manifolds". Universität Potsdam, 2000. http://opus.kobv.de/ubp/volltexte/2008/2580/.

Texto completo da fonte
Resumo:
Content: Chapter 3: Applications of Noncommutative Analysis to Operator Algebras on Singular Manifolds 3.1 Statement of the problem 3.2 Operators on the Model Cone 3.3 Operators on the Model Cusp of Order k 3.4 An Application to the Construction of Regularizers and Proof of the Finiteness Theorem
Estilos ABNT, Harvard, Vancouver, APA, etc.
34

Silva, Diogo Diniz Pereira da Silva e. "Identidades graduadas em álgebras não-associativas". [s.n.], 2010. http://repositorio.unicamp.br/jspui/handle/REPOSIP/306367.

Texto completo da fonte
Resumo:
Orientador: Plamen Emilov Kochloukov
Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica
Made available in DSpace on 2018-08-17T03:42:15Z (GMT). No. of bitstreams: 1 Silva_DiogoDinizPereiradaSilvae_D.pdf: 1168055 bytes, checksum: 49c676076235e3eef6f8a27594f092f7 (MD5) Previous issue date: 2010
Resumo: Neste trabalho apresentamos um estudo sobre identidades polinomiais graduadas em álgebras não associativas. Mais precisamente estudamos as identidades polinomiais graduadas da álgebra de Lie das matrizes de ordem 2 com traço zero com as três graduações naturais, a Z2-graduação, a Z2 _ Z2-graduação e a Z-graduação, neste caso conseguimos uma nova demonstração baseada em métodos elementares dos resultados de [27] que não se baseia em resultados da Teoria de Invariantes, estes resultados foram publicados em [30]. Estudamos também as identidades graduadas da álgebra de Jordan das matrizes simétricas de ordem 2, neste caso obtivemos bases para as identidades graduadas dessa álgebra de Jordan em todas as possíveis graduações, obtivemos também bases para as identidades fracas para os pares (Bn; Jn) e (B; J), onde Bn e B denotam as álgebras de Jordan de uma forma bilinear simétrica não degenerada nos espaços vetoriais Vn e V respectivamente, onde Vn tem dimensão n e V tem dimensão 1, esses resultados estão no artigo [29], aceito para publicação
Abstract: In this thesis we study graded identities in non associative algebras. Namely we study graded polynomial identities for the Lie algebra of the 2_2 matrices with trace zero with it's three natural gradings, the Z2-grading, the Z2_Z2-grading and the Z-grading, in this case we obtained a new proof of the results of [27] that doesn't involve use of Invariant Theory, this results were published in [30]. We also studied the graded identities of the Jordan algebra of the symmetric matrices of order two, we obtained basis for the graded identities of this Jordan algebra in all possible gradings, we also obtained basis for the weak identities of the pairs (Bn; Jn) and (B; J), where Bn and B are the Jordan algebras of a symmetric bilinear form in a the vector spaces Vn and V respectively, where Vn has dimension n and V has countable dimension, this results are in the article [29], accepted for publication
Doutorado
Álgebra Não-Comutativa
Doutor em Matemática
Estilos ABNT, Harvard, Vancouver, APA, etc.
35

Freitas, Jose Antonio Oliveira de. "Identidades polinomiais graduadas e produto tensorial graduado". [s.n.], 2009. http://repositorio.unicamp.br/jspui/handle/REPOSIP/306368.

Texto completo da fonte
Resumo:
Orientador: Plamen Emilov Koshlukov
Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatística e Computação Científica
Made available in DSpace on 2018-08-14T14:50:24Z (GMT). No. of bitstreams: 1 Freitas_JoseAntonioOliveirade_D.pdf: 1578135 bytes, checksum: a3352669dd5077f0f5949766026e7bb1 (MD5) Previous issue date: 2009
Resumo: Nesta tese estudamos identidades polinomiais graduadas para certas álgebras. Inicialmente, estudamos identidades satisfeitas pelo produto tensorial Z2-graduado. Este estudo foi motivado pelo trabalho de Regev e Seeman com produtos tensoriais Z2-graduados. Eles provaram vários casos nos qual tal produto tensorial é PI equivalente a certas álgebras T-primas. Também conjeturaram que isto sempre ocorre. Trabalhamos com os demais casos e conseguimos provar que tal conjetura e verdadeira. Alêm disso provamos que para certas álgebras, quando consideramos corpos de característica positiva, o produto tensorial graduado ainda se comporta como o não graduado. Consideramos também o produto tensorial-graduado e suas identidades. Provamos que o Teorema A B de Regev continua válido no caso do produto tensorial-graduado quando as álgebras são graduadas por grupos abelianos nitos, e é um bicaracter antissimétrico. Também estudamos a PI equivalência do produto tensorial-graduado de álgebras T-primas. Em seguida estudamos identidades graduadas, descrevemos um conjunto de geradores para as identidades Z-graduadas da álgebra de Lie W1. A álgebra W1 é a álgebra das derivações do anel de polinômios K[t], e é conhecida como a álgebra de Witt. Provamos que se a característica do corpo for 0, então as identidades Z-graduadas de W1 são geradas por um conjunto de identidades de grau 2 e 3. Mais ainda, provamos que não é possível obter um conjunto nito de geradores para as identidades Z-graduadas de W1.
Abstract: In this PhD thesis we study graded polynomial identities for certain types of algebras. First, we study polynomial identities satised by the Z2-graded tensor products. This research was motivated by the paper of Regev and Seeman about the Z2-graded tensor products. They proved that in a series of cases such tensor products are PI equivalent to T-prime algebras. Then they conjectured that this is always the case. We deal here with the remaining cases and thus conrm Regev and Seeman's conjecture. Furthermore, we prove that for some algebras we can remove the restriction on the characteristic of the base eld, and we show that the behaviour of the corresponding graded tensor products is quite similar to that for the usual ungraded tensor products. We consider too the graded tensor products and their identities where is a skew symmetric bicharacter. We show that Regev's A B theorem holds for graded tensor products whenever the gradings are by nite abelian groups. Furthermore we study the PI equivalence of -graded tensor products of T-prime algebras. Afterwards we study the graded identities of the Lie algebra W1. We describe a set of generators of the Z-graded identities of W1. The algebra W1 is the algebra of derivation of the polynomial ring K[t], and it is known as the Witt algebra. We prove that if K is a eld of characteristic 0, then the Z-graded identities of W1 are consequences of a collection of polynomials of degree 2 and 3. Furthermore we prove that the Z-graded identities for W1 do not admit a nite basis.
Doutorado
Algebra
Doutor em Matemática
Estilos ABNT, Harvard, Vancouver, APA, etc.
36

Resende, Adriana Souza. "Introdução elementar às álgebras Clifford 'CL IND.2' 'CL IND. 3'". [s.n.], 2010. http://repositorio.unicamp.br/jspui/handle/REPOSIP/306698.

Texto completo da fonte
Resumo:
Orientador: Waldyr Alves Rodrigues Junior
Dissertação (mestrado profissional) - Universidade Estadual de Campinas, Instituto de Matemática, Estatistica e Computação Cientifica
Made available in DSpace on 2018-08-15T23:09:32Z (GMT). No. of bitstreams: 1 Resende_AdrianaSouza_M.pdf: 17553204 bytes, checksum: a66cefe30e9957cc4351e03d3aec35b2 (MD5) Previous issue date: 2010
Resumo: O presente trabalho tem a intenção de apresentar por intermédio de uma linguagem unificada alguns conceitos de cálculo vetorial, álgebra linear (matrizes e transformações lineares) e também algumas idéias elementares sobre os grupos de rotações em duas e três dimensões e seus grupos de recobrimento, que geralmente são tratados como "fragmentos" em várias modalidades de cursos no ensino superior. Acreditamos portanto que nosso texto possas ser útil para alunos dos cursos de graduação dos cursos de Engenharia, Física, Matemática e interessados em Matemática em geral. A linguagem unificada à que nos referimos acima é obtida com a introdução do conceitos das álgebras geométricas (ou de Clifford) onde, como veremos, é possível fornecer uma formulação algébrica elegante aos conceitos de vetores, planos e volumes orientados e definir para tais objetos o produto escalar, os produtos contraídos à esquerda e à direita, o produto exterior (associado, como veremos, em casos particulares ao produto vetorial) e finalmente o produto geométrico (Clifford), o que permite o uso desses conceitos para a solução de inúmeros problemas de geometria analítica no R ² e no R ³. Procuramos ilustrar todos estes conceitos com vários exemplos e exercícios com graus variáveis de dificuldades. Nossa apresentação é bem próxima àquela do livro de Lounesto, e de fato muitas seções são traduções (eventualmente seguidas de comentários) de seções daquele livro. Contudo, em muitos lugares, acreditamos que nossa apresentação esclarece e completa as correspondentes do livro de Lounesto
Abstract: This paper aims to present using an unified language a few concepts of vector calculus, linear algebra (matrices and linear transformations) and also some basic ideas about the groups of rotations in two and three dimensions and their covering group, which generally are treated as "fragments" in various types of courses in higher education. We believe therefore that our text should be useful to students of undergraduate courses like Engineering, Physics, Mathematics and people interested in Mathematics in general. The unified language that we refer to above is obtained by introducing the concept of geometric (or Clifford) algebra where, as we shall see, it is possible to give an elegant algebraic formulation to the concepts of vectors, oriented planes and oriented volumes, and to define to those objects the scalar product, the right and left contracted products, the exterior product (associated, as we shall see, in particular cases to the vector product) and finally the geometric (Clifford) product, and moreover, to use those concepts to solve may problems of analytic geometry in R ² and R ³. We illustrated all those concepts with several examples and exercises with variable degrees of difficulties. Our presentation is nearly the one in Lounesto's book, and in fact some sections are no more than translations (eventually with commentaries) from sections of that book. However, in many places, we believe that our presentation clarify nd completement the corresponding ones in Lounesto's book
Mestrado
Ágebra
Mestre em Matemática
Estilos ABNT, Harvard, Vancouver, APA, etc.
37

Tiger, Norkvist Axel. "Morphisms of real calculi from a geometric and algebraic perspective". Licentiate thesis, Linköpings universitet, Algebra, geometri och diskret matematik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-175740.

Texto completo da fonte
Resumo:
Noncommutative geometry has over the past four of decades grown into a rich field of study. Novel ideas and concepts are rapidly being developed, and a notable application of the theory outside of pure mathematics is quantum theory. This thesis will focus on a derivation-based approach to noncommutative geometry using the framework of real calculi, which is a rather direct approach to the subject. Due to their direct nature, real calculi are useful when studying classical concepts in Riemannian geometry and how they may be generalized to a noncommutative setting. This thesis aims to shed light on algebraic aspects of real calculi by introducing a concept of morphisms of real calculi, which enables the study of real calculi on a structural level. In particular, real calculi over matrix algebras are discussed both from an algebraic and a geometric perspective.Morphisms are also interpreted geometrically, giving a way to develop a noncommutative theory of embeddings. As an example, the noncommutative torus is minimally embedded into the noncommutative 3-sphere.
Ickekommutativ geometri har under de senaste fyra decennierna blivit ett etablerat forskningsområde inom matematiken. Nya idéer och koncept utvecklas i snabb takt, och en viktig fysikalisk tillämpning av teorin är inom kvantteorin. Denna avhandling kommer att fokusera på ett derivationsbaserat tillvägagångssätt inom ickekommutativ geometri där ramverket real calculi används, vilket är ett relativt direkt sätt att studera ämnet på. Eftersom analogin mellan real calculi och klassisk Riemanngeometri är intuitivt klar så är real calculi användbara när man undersöker hur klassiska koncept inom Riemanngeometri kan generaliseras till en ickekommutativ kontext. Denna avhandling ämnar att klargöra vissa algebraiska aspekter av real calculi genom att introducera morfismer för dessa, vilket möjliggör studiet av real calculi på en strukturell nivå. I synnerhet diskuteras real calculi över matrisalgebror från både ett algebraiskt och ett geometriskt perspektiv. Morfismer tolkas även geometriskt, vilket leder till en ickekommutativ teori för inbäddningar. Som ett exempel blir den ickekommutativa torusen minimalt inbäddad i den ickekommutativa 3-sfären.
Estilos ABNT, Harvard, Vancouver, APA, etc.
38

Zähringer, Yasin Hisam Julian. "Non-commutative Iwasawa theory with (φ,Γ)-local conditions over distribution algebras". Thesis, King's College London (University of London), 2017. https://kclpure.kcl.ac.uk/portal/en/theses/noncommutative-iwasawa-theory-with-local-conditions-over-distribution-algebras(77477392-e3b4-4eb1-8acc-e59789517360).html.

Texto completo da fonte
Resumo:
In this thesis we formulate a natural non-commutative Iwasawa Main Conjecture for motives which fulfil the Dabrowski-Panchishkin condition on the level of (φ,Γ)-modules. The basic framework we employ is still Fukaya-Kato’s but we work systematically over Schneider-Teitelbaum’s distribution algebras of compact p-adic Lie groups instead of Iwasawa algebras. This allows us to consider as local conditions not just subrepresentations of the p-adic realisation which fulfil the Dabrowski-Panchishkin conditions but also sub-(φ,Γ)-modules which fulfil the analogous Dabrowski-Panchishkin conditions. We then combine this with Pottharst’s Selmer complexes and a generalisation of Nakamura’s Local Epsilon Conjecture for (φ,Γ)-modules to conjecturally define p-adic L-functions. We prove that the validity of our main conjecture for these p-adic L-functions follows from the validity of Fukaya-Kato’s Equivariant Tamagawa Number Conjecture and our generalisation of Nakamura’s Local Epsilon Conjecture. Moreover we are also able to compute the values of these p-adic L-functions at motivic points. Our formalism allows us, for example, to unify the GL2-main conjecture of elliptic curves which have either ordinary or supersingular reduction at p. In addition, we can use our formalism to give a new, and very natural, interpretation of Pollack’s ±-construction in the context of supersingular elliptic curves and we are hopeful that this new interpretation will in the future lead to the construction of natural non-commutative generalizations.
Estilos ABNT, Harvard, Vancouver, APA, etc.
39

Mello, Thiago Castilho de 1984. "Identidades polinomiais em álgebras matriciais sobre a álgebra de Grassmann". [s.n.], 2012. http://repositorio.unicamp.br/jspui/handle/REPOSIP/306366.

Texto completo da fonte
Resumo:
Orientador: Plamen Emilov Kochloukov
Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matemática, Estatística e Computação Científica
Made available in DSpace on 2018-08-19T21:39:41Z (GMT). No. of bitstreams: 1 Mello_ThiagoCastilhode_D.pdf: 1364753 bytes, checksum: 66955ce4a4c6b84e5c6dcc1a414f3f24 (MD5) Previous issue date: 2012
Resumo: Nesta tese estudamos a álgebra genérica de M1;1 em dois geradores sobre um corpo infinito de característica diferente de 2. Descrevemos o centro desta álgebra e provamos que este é a soma direta do corpo com um ideal nilpotente da álgebra. Como consequência mostramos que este centro contém elementos não escalares, respondendo a uma pergunta feita por Berele. Em característica zero, estudamos também as identidades polinomiais de tal álgebra genérica e exibimos uma base finita para seu T-ideal, utilizando a descrição do seu centro e os resultados de Popov sobre as identidades de M1;1 em característica zero. Segue que tal base é formada pelos polin^omios [x1; x2][x3; x4][x5; x6], [[x1; x2][x3; x4]; x5] e s4, a identidade polinomial standard de grau 4. Por fim, utilizando ideias e resultados de Nikolaev sobre as identidades em duas variáveis de M2(K) em característica zero, mostramos que todas as identidades polinomiais em duas variáveis de M1;1 são consequências das identidades [[x1; x2]2; x1] e [x1; x2]³
Abstract: In this thesis, we study the generic algebra of M1;1 in two generators over an infinite field of characteristic different from 2. We describe the centre of this algebra and prove that this centre is a direct sum of the field and a nilpotent ideal of the algebra. As a consequence, we show that such centre contains nonscalar elements and thus we answer a question posed by Berele. In characteristic zero we also study the identities of this generic algebra and find a finite basis for its ideal of identities using the description of its centre and the results of Popov, about the identities of M1;1 in characteristic zero. It follows that such a basis is formed by the polynomials [x1; x2][x3; x4][x5; x6], [[x1; x2][x3; x4]; x5] and by s4, the standard identity of degree four. Finally, using ideas and results of Nikolaev about the identities in two variables of M2(K) in characteristic zero, we show that the polynomial identities in two variables of M1;1 follow from [[x1; x2]2; x1] and [x1; x2]³
Doutorado
Matematica
Doutor em Matemática
Estilos ABNT, Harvard, Vancouver, APA, etc.
40

Galvão, Lucas. "A dimensão de Gelfand-Kirillov de certas álgebras". Universidade de São Paulo, 2014. http://www.teses.usp.br/teses/disponiveis/55/55135/tde-18032015-164005/.

Texto completo da fonte
Resumo:
A dimensão de Gelfand-Kirillov mede a taxa de crescimento assintótico de álgebras. Como fornece informações importantes sobre a sua estrutura, este invariante se tornou uma das ferramentas padrão no estudo de álgebras de dimensão infinita. Neste trabalho apresentamos as propriedades básicas da dimensão de Gelfand-Kirillov de álgebras e de módulos, e também mostramos o cálculo da dimensão de Gelfand-Kirillov de algumas álgebras e módulos, sendo o exemplo mais importante o cálculo da dimensão de Gelfand-Kirillov da álgebra de Weyl An.
The Gelfand-Kirillov dimension measures the asymptotic rate of growth of algebras. Since it provides important structural information, this invariant has become one of the standard tools in the study of innite dimensional algebras. In this work we present the basic properties of the Gelfand-Kirillov dimension of algebras and modules, and we also show the calculation of the Gelfand-Kirillov dimension of some algebras and modules, being the most important example the calculation of the Gelfand-Kirillov dimension of the Weyl algebra An.
Estilos ABNT, Harvard, Vancouver, APA, etc.
41

Yasumura, Felipe Yukihide 1991. "Identidades polinomiais em álgebras de matrizes". [s.n.], 2014. http://repositorio.unicamp.br/jspui/handle/REPOSIP/306360.

Texto completo da fonte
Resumo:
Orientador: Plamen Emilov Kochloukov
Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matemática Estatística e Computação
Made available in DSpace on 2018-08-24T08:22:37Z (GMT). No. of bitstreams: 1 Yasumura_FelipeYukihide_M.pdf: 1764013 bytes, checksum: e6eeb3b9e9fd697e59dce7509c017213 (MD5) Previous issue date: 2014
Resumo: Nesta dissertação, será apresentada noções básicas da teoria de álgebras com identidades polinomiais (denominados de PI-álgebras), e, seguindo o trabalho de Razmyslov, provaremos a propriedade de Specht para a álgebra de Lie de matrizes 2x2 de traço zero; e acharemos uma base minimal de identidades da álgebra associativa de matrizes 2x2, baseado nos trabalhos de Drensky. Para esses objetivos, serão desenvolvidas noções da linguagem e teoria de álgebra não-comutativa clássica; serão desenvolvidas técnicas em representações do grupo simétrico e geral linear; e será abordada noções básicas de matrizes genéricas. Na demonstração da propriedade de Specht para a álgebra de Lie de matrizes 2x2 de traço zero, utilizaremos uma ténica desenvolvida por Razmyslov (identidades fracas), e utilizaremos teoria de estrutura de PI-álgebras (teoria de álgebra não comutativa aplicada em PI-álgebras - a maioria dos resultados apresentados sobre este assunto são devido a Amitsur). Determinar uma base minimal de identidades para a álgebra de matrizes 2x2 utilizará fortemente a teoria de representações, e os resultados apresentados neste trabalho foram desenvolvidos principalmente por Drensky. Na medida do possível, toda a linguagem e resultados necessários para a apresentação e demonstração dos teoremas principais serão apresentados neste trabalho, e espero que um leitor deste trabalho possa ter noções de alguns tópicos de álgebra não comutativa, noções da teoria básica de PI-álgebras e noções da importância e simplificação de contas das técnicas de representações e matrizes genéricas
Abstract: In this dissertation, will be presented basic notions of the theory of algebras with polynomial identity (named PI-algebras), and, following the works of Razmyslov, we'll prove the Specht property for the Lie algebra of matrices 2x2 with nulltrace; and we'll find a minimal basis of identities of the matrix algebra 2x2, based in the works of Dresnky. For these objectives, we'll develop basic notions of language and theory of classic non-commutative algebra; we'll develop techniques in representations of symmetric group and general linear group; and we'll approach basic notions of generic matrices. In the proof of Specht property for the Lie algebra of 2x2 matrices with nulltrace, we'll use a technique developed by Razmyslov (weak identities), and we'll use theory of structure of PI-algebras (theory of non-commutative algebras applied on PI-algebras - the most results in this subject are due to Amitsur). Determining a minimal basis of identities of the matrix algebra 2x2 will use strongly the representation theory, and the results was obtained mainly by Drensky. We'll try to exhibit all the necessary language and results for the presentation of the main theorems' proofs in this work, and we expect that a reader of this work can has notions of some topics on non-commutative algebra, notions of basic theory of PI-algebras and notions of the importance and simplification of the techniques with representations and generic matrices
Mestrado
Matematica
Mestre em Matemática
Estilos ABNT, Harvard, Vancouver, APA, etc.
42

Zucca, Alessandro. "Dirac Operators on Quantum Principal G-Bundles". Doctoral thesis, SISSA, 2013. http://hdl.handle.net/20.500.11767/4108.

Texto completo da fonte
Resumo:
In this thesis I discuss some results on the noncommutative (spin) geometry of quantum principal G-bundles. The first part of the thesis is devoted to the study of spectral triples over toral bundles; extending some recent results by L. Dabrowski and A. Sitarz, we introduce the notion of projectable spectral triple for T^n-bundles. Moreover, we work out twisted Dirac operators. We discuss, in particular, the application of these results to noncommutative tori. In the second part of the thesis, instead, we work out a method for constructing real spectral triples over cleft quantum principal G-bundles and we study the properties of these triples and their behaviour under gauge transformations. Some of the results discussed in this thesis can also be found in the following papers: arXiv:1305.6185 arXiv:1308.4738
Estilos ABNT, Harvard, Vancouver, APA, etc.
43

Andres, Wolf Daniel [Verfasser]. "Noncommutative computer algebra with applications in algebraic analysis / Wolf Daniel Andres". Aachen : Hochschulbibliothek der Rheinisch-Westfälischen Technischen Hochschule Aachen, 2014. http://d-nb.info/1049821475/34.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
44

Kronewitter, Frank Dell. "Noncommutative computer algebra in linear algebra and control theory /". Diss., Connect to a 24 p. preview or request complete full text in PDF format. Access restricted to UC campuses, 2000. http://wwwlib.umi.com/cr/ucsd/fullcit?p9963663.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
45

Machado, Ulisses Diego Almeida Santos. "Relações de dispersão deformadas na cosmologia inflacionária". Universidade de São Paulo, 2012. http://www.teses.usp.br/teses/disponiveis/14/14131/tde-26062013-172342/.

Texto completo da fonte
Resumo:
Relação de dispersão é outro nome para a função Hamiltoniana, cujo conhecimento especica completamente a dinâmica de um sistema no formalismo da mecânica classica. Sua escolha está intimamente vinculada às simetrias do sistema e, no contexto cosmologico aqui apresentado, com as simetrias locais obedecidas pelas leis fsicas. Mais ainda, a contribuição da materia na dinâmica cosmologica reflete a escolha do grupo local de simetrias das leis fsicas. Por outro lado, o problema fundamental da cosmologia pode ser definido como a construção de um modelo de evolução temporal de estados que, sob as hipoteses mais simples sobre estados iniciais (digamos, que demande a menor quantidade de informação possível para serem enunciadas), prediga o estado atual observado. O paradigma inacionario é atualmente a ideia que melhor cumpre esta denição, uma vez que prediz que uma grande variedade de condições iniciais leva a aspectos fundamentais do universo observado. Contudo, os mecanismos usuais de realização da inflação sofrem de problemas conceituais. O ponto de vista deste trabalho e que a realização convencional da inflação, isto é, atraves dos campos escalares minimamente acoplados, é a formulação localmente relativisticamente invariante da inflação. A maneira de incluir quebras e deformações da estrutura de simetrias locais na cosmologia é não única e está associado ao chamado problema trans Planckiano da inflação. Analogamente, a motivação conceitual para incluir esse tipo de modicação tampouco é unica. Dependendo do esquema de realização, a versão localmente não relativstica da mesma pode apresentar graves diculdades de conciliação com observações atuais, ou apresentar vantagens conceituais em relacão ao modelo padrão de inflacão, enquanto em conformidade com observações cosmológicas. Da maneira como foi posto o problema fundamental da cosmologia, a escolha das simetrias locais influi na regra de evolução dos estados. O conceito de simetrias encontra sua formulação independente de teorias físicas no formalismo da teoria de grupos, mas consideraremos uma extensão da ideia, de aplicabilidade mais geral, a teoria das algebras de Hopf que, de certo modo, trata das simetrias de estruturas algebricas. Esta extensão é útil inclusive no trato de simetrias dos espacos não comutativos, uma das principais propostas fsicas que em última analise afeta a estrutura de simetrias locais do espaco-tempo. A expressão simetrias locais, por si só, não diz muito sem a consideração de regras de realização. Essas regras dependem da estrutura matematica das observaveis da teoria. Sob hipoteses muito gerais, que não especicam uma teoria em particular, é possível mostrar, não como um teorema matematico formal, mas como uma hipotese tecnicamente bem motivada, que existem apenas dois tipos de teorias fsicas: as classicas e as quânticas. Trabalharemos sob essas hipoteses, as quais se formulam algebricamente assumindo a estrutura de C*-álgebra para as observaveis físicas, outra motivação para o uso das álgebras de Hopf para descrição das simetrias da natureza.
Dispersion relation is another name for the Hamiltonian function whose knowledge completely specifies the dynamics in the formalism of classical mechanics. Its choice is intimately related to the symmetries of the system, and, in the cosmological context here exposed, with the local space-time symmetries obeyed by physical laws. For the other side, the fundamental problem of cosmology can be defined as a construction of a time evolution model of states which, under simplest possible hypothesis concerning initial conditions (say, which demands the minimal amount of information to be specified), predicts the present observed state. The inflationary paradigm is currently the idea which better accomplishes this definition, since it predicts that a great variety of initial conditions lead to essential aspects of observed universe. The usual mechanisms of inflation suffer, however, with conceptual problems. The point of view of this work is that the usual realization of inflation based on weakly coupled scalar fields is the local relativistic invariant realization. The way of including breaks and deformations of the local space-time symmetries is not unique and it is associated to the so called Trans-Planckian problem of inflation. Analogously, the motivation to include this kind of modification is neither unique. Depending of the scheme of realization, the locally non-relativistic version may lead to serious difficulties in conciliation with observations, or to conceptual advantages over standard formulations while in accordance with observational data. In the way that was proposed the fundamental problem of cosmology, the choice of local symmetries affects the rule of evolution of states. The concept of symmetry finds its formulation independently of physical theories in the group theory formalism, but we will consider an extension of the idea, with wider applicability, the theory of Hopf algebras, which is about symmetries of algebraic structures. That extension is also useful to deal with symmetries of non-commutative spaces, one of the main physical proposals that affects the structure of space-time symmetries. The expression, local symmetries, by itself, does not say too much without considering realization rules. Those rules depend on mathematical structure of observables in the theory. Under very general hypothesis that do not specify a particular theory, it is possible to show, not as a formal mathematical theorem, but as a technically well motivated hypothesis, that only two types of physical theories do exist: The classical ones and the quantum ones. We are going to work under those hypothesis, which can be algebraically formulated assuming a C*-algebra structure for physical observables, another motivation for the use of algebraic structures like Hopf algebras for the description of nature\'s symmetries
Estilos ABNT, Harvard, Vancouver, APA, etc.
46

Dias, David Pires. "O caráter de Chern-Connes para C*-sistemas dinâmicos calculado em algumas álgebras de operadores pseudodiferenciais". Universidade de São Paulo, 2008. http://www.teses.usp.br/teses/disponiveis/45/45131/tde-05082008-164858/.

Texto completo da fonte
Resumo:
Dado um C$^*$-sistema dinâmico $(A, G, \\alpha)$ define-se um homomorfismo, denominado de caráter de Chern-Connes, que leva elementos de $K_0(A) \\oplus K_1(A)$, grupos de K-teoria da C$^*$-álgebra $A$, em $H_{\\mathbb}^*(G)$, anel da cohomologia real de deRham do grupo de Lie $G$. Utilizando essa definição, nós calculamos explicitamente esse homomorfismo para os exemplos $(\\overline{\\Psi_^0(S^1)}, S^1, \\alpha)$ e $(\\overline{\\Psi_^0(S^2)}, SO(3), \\alpha)$, onde $\\overline{\\Psi_^0(M)}$ denota a C$^*$-álgebra gerada pelos operadores pseudodiferenciais clássicos de ordem zero da variedade $M$ e $\\alpha$ a ação de conjugação pela representação regular (translações).
Given a C$^*$-dynamical system $(A, G, \\alpha)$ one defines a homomorphism, called the Chern-Connes character, that take an element in $K_0(A) \\oplus K_1(A)$, the K-theory groups of the C$^*$-algebra $A$, and maps it into $H_{\\mathbb}^*(G)$, the real deRham cohomology ring of $G$. We explictly compute this homomorphism for the examples $(\\overline{\\Psi_^0(S^1)}, S^1, \\alpha)$ and $(\\overline{\\Psi_^0(S^2)}, SO(3), \\alpha)$, where $\\overline{\\Psi_^0(M)}$ denotes the C$^*$-álgebra gene\\-rated by the classical pseudodifferential operators of zero order in the manifold $M$ and $\\alpha$ the action of conjugation by the regular representation (translations).
Estilos ABNT, Harvard, Vancouver, APA, etc.
47

Struble, Craig Andrew. "Analysis and Implementation of Algorithms for Noncommutative Algebra". Diss., Virginia Tech, 2000. http://hdl.handle.net/10919/27393.

Texto completo da fonte
Resumo:
A fundamental task of algebraists is to classify algebraic structures. For example, the classification of finite groups has been widely studied and has benefited from the use of computational tools. Advances in computer power have allowed researchers to attack problems never possible before. In this dissertation, algorithms for noncommutative algebra, when ab is not necessarily equal to ba, are examined with practical implementations in mind. Different encodings of associative algebras and modules are also considered. To effectively analyze these algorithms and encodings, the encoding neutral analysis framework is introduced. This framework builds on the ideas used in the arithmetic complexity framework defined by Winograd. Results in this dissertation fall into three categories: analysis of algorithms, experimental results, and novel algorithms. Known algorithms for calculating the Jacobson radical and Wedderburn decomposition of associative algebras are reviewed and analyzed. The algorithms are compared experimentally and a recommendation for algorithms to use in computer algebra systems is given based on the results. A new algorithm for constructing the Drinfel'd double of finite dimensional Hopf algebras is presented. The performance of the algorithm is analyzed and experiments are performed to demonstrate its practicality. The performance of the algorithm is elaborated upon for the special case of group algebras and shown to be very efficient. The MeatAxe algorithm for determining whether a module contains a proper submodule is reviewed. Implementation issues for the MeatAxe in an encoding neutral environment are discussed. A new algorithm for constructing endomorphism rings of modules defined over path algebras is presented. This algorithm is shown to have better performance than previously used algorithms. Finally, a linear time algorithm, to determine whether a quotient of a path algebra, with a known Gröbner basis, is finite or infinite dimensional is described. This algorithm is based on the Aho-Corasick pattern matching automata. The resulting automata is used to efficiently determine the dimension of the algebra, enumerate a basis for the algebra, and reduce elements to normal forms.
Ph. D.
Estilos ABNT, Harvard, Vancouver, APA, etc.
48

Sasai, Yuya. "Noncommutative Field Theories and Hopf Algebraic Symmetries". 京都大学 (Kyoto University), 2009. http://hdl.handle.net/2433/124412.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
49

Holm, Christoffer. "A Noncommutative Catenoid". Thesis, Linköpings universitet, Matematik och tillämpad matematik, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-139794.

Texto completo da fonte
Resumo:
Noncommutative geometry generalizes many geometric results from such fields as differential geometry and algebraic geometry to a context where commutativity cannot be assumed. Unfortunately there are few concrete non-trivial examples of noncommutative objects. The aim of this thesis is to construct a noncommutative surface  which will be a generalization of the well known surface called the catenoid. This surface will be constructed using the Diamond lemma, derivations will be constructed over  and a general localization will be provided using the Ore condition.
Estilos ABNT, Harvard, Vancouver, APA, etc.
50

Crawford, Simon Philip. "Singularities of noncommutative surfaces". Thesis, University of Edinburgh, 2018. http://hdl.handle.net/1842/31543.

Texto completo da fonte
Resumo:
The primary objects of study in this thesis are noncommutative surfaces; that is, noncommutative noetherian domains of GK dimension 2. Frequently these rings will also be singular, in the sense that they have infinite global dimension. Very little is known about singularities of noncommutative rings, particularly those which are not finite over their centre. In this thesis, we are able to give a precise description of the singularities of a few families of examples. In many examples, we lay the foundations of noncommutative singularity theory by giving a precise description of the singularities of the fundamental examples of noncommutative surfaces. We draw comparisons with the fundamental examples of commutative surface singularities, called Kleinian singularities, which arise from the action of a finite subgroup of SL(2; k) acting on a polynomial ring. The main tool we use to study the singularities of noncommutative surfaces is the singularity category, first introduced by Buchweitz in [Buc86]. This takes a (possibly noncommutative) ring R and produces a triangulated category Dsg(R) which provides a measure of "how singular" R is. Roughly speaking, the size of this category reflects how bad the singularity is; in particular, Dsg(R) is trivial if and only if R has finite global dimension. In [CBH98], Crawley-Boevey-Holland introduced a family of noncommutative rings which can be thought of as deformations of the coordinate ring of a Kleinian singularity. We give a precise description of the singularity categories of these deformations, and show that their singularities can be thought of as unions of (commutative) Kleinian singularities. In particular, our results show that deforming a singularity in this setting makes it no worse. Another family of noncommutative surfaces were introduced by Rogalski-Sierra-Stafford in [RSS15b]. The authors showed that these rings share a number of ring-theoretic properties with deformations of type A Kleinian singularities. We apply our techniques to show that the "least singular" example has an A1 singularity, and conjecture that other examples exhibit similar behaviour. In [CKWZ16a], Chan-Kirkman-Walton-Zhang gave a definition for a quantum version of Kleinian singularities. These require the data of a two-dimensional AS regular algebra A and a finite group G acting on A with trivial homological determinant. We extend a number of results in [CBH98] to the setting of quantum Kleinian singularities. More precisely, we show that one can construct deformations of the skew group rings A#G and the invariant rings AG, and then determine some of their ring-theoretic properties. These results allow us to give a precise description of the singularity categories of quantum Kleinian singularities, which often have very different behaviour to their non-quantum analogues.
Estilos ABNT, Harvard, Vancouver, APA, etc.
Oferecemos descontos em todos os planos premium para autores cujas obras estão incluídas em seleções literárias temáticas. Contate-nos para obter um código promocional único!

Vá para a bibliografia