Literatura científica selecionada sobre o tema "Noncommutative algebras"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Noncommutative algebras".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Noncommutative algebras"
Arutyunov, A. A. "Derivation Algebra in Noncommutative Group Algebras". Proceedings of the Steklov Institute of Mathematics 308, n.º 1 (janeiro de 2020): 22–34. http://dx.doi.org/10.1134/s0081543820010022.
Texto completo da fonteZhou, Chaoyuan. "Acyclic Complexes and Graded Algebras". Mathematics 11, n.º 14 (19 de julho de 2023): 3167. http://dx.doi.org/10.3390/math11143167.
Texto completo da fonteAbel, Mati, e Krzysztof Jarosz. "Noncommutative uniform algebras". Studia Mathematica 162, n.º 3 (2004): 213–18. http://dx.doi.org/10.4064/sm162-3-2.
Texto completo da fonteXu, Ping. "Noncommutative Poisson Algebras". American Journal of Mathematics 116, n.º 1 (fevereiro de 1994): 101. http://dx.doi.org/10.2307/2374983.
Texto completo da fonteRoh, Jaiok, e Ick-Soon Chang. "Approximate Derivations with the Radical Ranges of Noncommutative Banach Algebras". Abstract and Applied Analysis 2015 (2015): 1–7. http://dx.doi.org/10.1155/2015/594075.
Texto completo da fonteErcolessi, Elisa, Giovanni Landi e Paulo Teotonio-Sobrinho. "Noncommutative Lattices and the Algebras of Their Continuous Functions". Reviews in Mathematical Physics 10, n.º 04 (maio de 1998): 439–66. http://dx.doi.org/10.1142/s0129055x98000148.
Texto completo da fonteFerreira, Vitor O., Jairo Z. Gonçalves e Javier Sánchez. "Free symmetric algebras in division rings generated by enveloping algebras of Lie algebras". International Journal of Algebra and Computation 25, n.º 06 (setembro de 2015): 1075–106. http://dx.doi.org/10.1142/s0218196715500319.
Texto completo da fonteLiang, Shi-Dong, e Matthew J. Lake. "An Introduction to Noncommutative Physics". Physics 5, n.º 2 (18 de abril de 2023): 436–60. http://dx.doi.org/10.3390/physics5020031.
Texto completo da fonteMahanta, Snigdhayan. "Noncommutative stable homotopy and stable infinity categories". Journal of Topology and Analysis 07, n.º 01 (2 de dezembro de 2014): 135–65. http://dx.doi.org/10.1142/s1793525315500077.
Texto completo da fonteLETZTER, EDWARD S. "NONCOMMUTATIVE IMAGES OF COMMUTATIVE SPECTRA". Journal of Algebra and Its Applications 07, n.º 05 (outubro de 2008): 535–52. http://dx.doi.org/10.1142/s0219498808002941.
Texto completo da fonteTeses / dissertações sobre o assunto "Noncommutative algebras"
Rennie, Adam Charles. "Noncommutative spin geometry". Title page, contents and introduction only, 2001. http://web4.library.adelaide.edu.au/theses/09PH/09phr4163.pdf.
Texto completo da fonteHartman, Gregory Neil. "Graphs and Noncommutative Koszul Algebras". Diss., Virginia Tech, 2002. http://hdl.handle.net/10919/27156.
Texto completo da fontePh. D.
Schoenecker, Kevin J. "An infinite family of anticommutative algebras with a cubic form". Columbus, Ohio : Ohio State University, 2007. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1187185559.
Texto completo da fonteRussell, Ewan. "Prime ideals in quantum algebras". Thesis, University of Edinburgh, 2009. http://hdl.handle.net/1842/3450.
Texto completo da fontePhan, Christopher Lee 1980. "Koszul and generalized Koszul properties for noncommutative graded algebras". Thesis, University of Oregon, 2009. http://hdl.handle.net/1794/10367.
Texto completo da fonteWe investigate some homological properties of graded algebras. If A is an R -algebra, then E (A) := Ext A ( R, R ) is an R-algebra under the cup product and is called the Yoneda algebra. (In most cases, we assume R is a field.) A well-known and widely-studied condition on E(A) is the Koszul property. We study a class of deformations of Koszul algebras that arises from the study of equivariant cohomology and algebraic groups and show that under certain circumstances these deformations are Poincaré-Birkhoff-Witt deformations. Some of our results involve the [Special characters omitted] property, recently introduced by Cassidy and Shelton, which is a generalization of the Koszul property. While a Koszul algebra must be quadratic, a [Special characters omitted] algebra may have its ideal of relations generated in different degrees. We study the structure of the Yoneda algebra corresponding to a monomial [Special characters omitted.] algebra and provide an example of a monomial [Special characters omitted] algebra whose Yoneda algebra is not also [Special characters omitted]. This example illustrates the difficulty of finding a [Special characters omitted] analogue of the classical theory of Koszul duality. It is well-known that Poincaré-Birkhoff-Witt algebras are Koszul. We find a [Special characters omitted] analogue of this theory. If V is a finite-dimensional vector space with an ordered basis, and A := [Special characters omitted] (V)/I is a connected-graded algebra, we can place a filtration F on A as well as E (A). We show there is a bigraded algebra embedding Λ: gr F E (A) [Special characters omitted] E (gr F A ). If I has a Gröbner basis meeting certain conditions and gr F A is [Special characters omitted], then Λ can be used to show that A is also [Special characters omitted]. This dissertation contains both previously published and co-authored materials.
Committee in charge: Brad Shelton, Chairperson, Mathematics; Victor Ostrik, Member, Mathematics; Christopher Phillips, Member, Mathematics; Sergey Yuzvinsky, Member, Mathematics; Van Kolpin, Outside Member, Economics
Meyer, Jonas R. "Noncommutative Hardy algebras, multipliers, and quotients". Diss., University of Iowa, 2010. https://ir.uiowa.edu/etd/712.
Texto completo da fonteUhl, Christine. "Quantum Drinfeld Hecke Algebras". Thesis, University of North Texas, 2016. https://digital.library.unt.edu/ark:/67531/metadc862764/.
Texto completo da fonteZhao, Xiangui. "Groebner-Shirshov bases in some noncommutative algebras". London Mathematical Society, 2014. http://hdl.handle.net/1993/24315.
Texto completo da fonteOblomkov, Alexei. "Double affine Hecke algebras and noncommutative geometry". Thesis, Massachusetts Institute of Technology, 2005. http://hdl.handle.net/1721.1/31165.
Texto completo da fonteIncludes bibliographical references (p. 93-96).
In the first part we study Double Affine Hecke algebra of type An-1 which is important tool in the theory of orthogonal polynomials. We prove that the spherical subalgebra eH(t, 1)e of the Double Affine Hecke algebra H(t, 1) of type An-1 is an integral Cohen-Macaulay algebra isomorphic to the center Z of H(t, 1), and H(t, 1)e is a Cohen-Macaulay eH(t, 1)e-module with the property H(t, 1) = EndeH(t,tl)(H(t, 1)e). This implies the classification of the finite dimensional representations of the algebras. In the second part we study the algebraic properties of the five-parameter family H(tl, t2, t3, t4; q) of double affine Hecke algebras of type CVC1, which control Askey- Wilson polynomials. We show that if q = 1, then the spectrum of the center of H is an affine cubic surface C, obtained from a projective one by removing a triangle consisting of smooth points. Moreover, any such surface is obtained as the spectrum of the center of H for some values of parameters. We prove that the only fiat de- formations of H come from variations of parameters. This explains from the point of view of noncommutative geometry why one cannot add more parameters into the theory of Askey-Wilson polynomials. We also prove several results on the universality of the five-parameter family H(tl, t2, t3, t4; q) of algebras.
by Alexei Oblomkov.
Ph.D.
Gohm, Rolf. "Noncommutative stationary processes /". Berlin [u.a.] : Springer, 2004. http://www.loc.gov/catdir/enhancements/fy0813/2004103932-d.html.
Texto completo da fonteLivros sobre o assunto "Noncommutative algebras"
Farb, Benson. Noncommutative algebra. New York: Springer-Verlag, 1993.
Encontre o texto completo da fonteMarubayashi, Hidetoshi. Prime Divisors and Noncommutative Valuation Theory. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012.
Encontre o texto completo da fonteKhalkhali, Masoud, e Guoliang Yu. Perspectives on noncommutative geometry. Providence, R.I: American Mathematical Society, 2011.
Encontre o texto completo da fonteSilva, Ana Cannas da. Geometric models for noncommutative algebras. Providence, R.I: American Mathematical Society, 1999.
Encontre o texto completo da fonteRosenberg, Alex. Noncommutative algebraic geometry and representations of quantized algebras. Dordrecht: Kluwer Academic Publishers, 1995.
Encontre o texto completo da fonteCuculescu, I. Noncommutative probability. Dordrecht: Kluwer Academic Publishers, 1994.
Encontre o texto completo da fonteRosenberg, Alexander L. Noncommutative Algebraic Geometry and Representations of Quantized Algebras. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-015-8430-2.
Texto completo da fonteDiep, Do Ngoc. Methods of noncommutative geometry for group C*-algebras. Boca Raton: Chapman & Hall/CRC, 2000.
Encontre o texto completo da fonteBonfiglioli, Andrea. Topics in noncommutative algebra: The theorem of Campbell, Baker, Hausdorff and Dynkin. Heidelberg: Springer, 2012.
Encontre o texto completo da fonteDoran, Robert S., e Richard V. Kadison, eds. Operator Algebras, Quantization, and Noncommutative Geometry. Providence, Rhode Island: American Mathematical Society, 2004. http://dx.doi.org/10.1090/conm/365.
Texto completo da fonteCapítulos de livros sobre o assunto "Noncommutative algebras"
Cuculescu, I., e A. G. Oprea. "Jordan Algebras". In Noncommutative Probability, 293–315. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-015-8374-9_7.
Texto completo da fonteArzumanian, Victor, e Suren Grigorian. "Noncommutative Uniform Algebras". In Linear Operators in Function Spaces, 101–9. Basel: Birkhäuser Basel, 1990. http://dx.doi.org/10.1007/978-3-0348-7250-8_5.
Texto completo da fonteCuculescu, I., e A. G. Oprea. "Probability on von Neumann Algebras". In Noncommutative Probability, 53–94. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-015-8374-9_2.
Texto completo da fonteRosenberg, Alexander L. "Noncommutative Affine Schemes". In Noncommutative Algebraic Geometry and Representations of Quantized Algebras, 1–47. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-015-8430-2_1.
Texto completo da fonteRosenberg, Alexander L. "Noncommutative Local Algebra". In Noncommutative Algebraic Geometry and Representations of Quantized Algebras, 110–41. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-015-8430-2_3.
Texto completo da fonteRosenberg, Alexander L. "Noncommutative Projective Spectrum". In Noncommutative Algebraic Geometry and Representations of Quantized Algebras, 276–305. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-015-8430-2_7.
Texto completo da fonteAschieri, Paolo. "Quantum Groups, Quantum Lie Algebras, and Twists". In Noncommutative Spacetimes, 111–32. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-89793-4_7.
Texto completo da fonteBratteli, Ola. "Noncommutative vectorfields". In Derivations, Dissipations and Group Actions on C*-algebras, 34–240. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/bfb0098820.
Texto completo da fonteGracia-Bondía, José M., Joseph C. Várilly e Héctor Figueroa. "Kreimer-Connes-Moscovici Algebras". In Elements of Noncommutative Geometry, 597–640. Boston, MA: Birkhäuser Boston, 2001. http://dx.doi.org/10.1007/978-1-4612-0005-5_14.
Texto completo da fonteVárilly, Joseph C. "The Interface of Noncommutative Geometry and Physics". In Clifford Algebras, 227–42. Boston, MA: Birkhäuser Boston, 2004. http://dx.doi.org/10.1007/978-1-4612-2044-2_15.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Noncommutative algebras"
VÁRILLY, JOSEPH C. "HOPF ALGEBRAS IN NONCOMMUTATIVE GEOMETRY". In Proceedings of the Summer School. WORLD SCIENTIFIC, 2003. http://dx.doi.org/10.1142/9789812705068_0001.
Texto completo da fonteSchauenburg, P. "Weak Hopf algebras and quantum groupoids". In Noncommutative Geometry and Quantum Groups. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2003. http://dx.doi.org/10.4064/bc61-0-12.
Texto completo da fonteKhalkhali, M., e B. Rangipour. "Cyclic cohomology of (extended) Hopf algebras". In Noncommutative Geometry and Quantum Groups. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2003. http://dx.doi.org/10.4064/bc61-0-5.
Texto completo da fonteGomez, X., e S. Majid. "Relating quantum and braided Lie algebras". In Noncommutative Geometry and Quantum Groups. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2003. http://dx.doi.org/10.4064/bc61-0-6.
Texto completo da fonteSzymański, Wojciech. "Quantum lens spaces and principal actions on graph C*-algebras". In Noncommutative Geometry and Quantum Groups. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2003. http://dx.doi.org/10.4064/bc61-0-18.
Texto completo da fonteMORI, IZURU. "NONCOMMUTATIVE PROJECTIVE SCHEMES AND POINT SCHEMES". In Proceedings of the International Conference on Algebras, Modules and Rings. WORLD SCIENTIFIC, 2006. http://dx.doi.org/10.1142/9789812774552_0014.
Texto completo da fonteMajewski, Władysław A., e Marcin Marciniak. "On the structure of positive maps between matrix algebras". In Noncommutative Harmonic Analysis with Applications to Probability. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2007. http://dx.doi.org/10.4064/bc78-0-18.
Texto completo da fonteWakui, Michihisa. "The coribbon structures of some finite dimensional braided Hopf algebras generated by 2×2-matrix coalgebras". In Noncommutative Geometry and Quantum Groups. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2003. http://dx.doi.org/10.4064/bc61-0-20.
Texto completo da fonteLONGO, ROBERTO. "OPERATOR ALGEBRAS AND NONCOMMUTATIVE GEOMETRIC ASPECTS IN CONFORMAL FIELD THEORY". In XVIth International Congress on Mathematical Physics. WORLD SCIENTIFIC, 2010. http://dx.doi.org/10.1142/9789814304634_0008.
Texto completo da fonteFernández, David, e Luis Álvarez–cónsul. "Noncommutative bi-symplectic $\mathbb{N}Q$-algebras of weight 1". In The 10th AIMS Conference on Dynamical Systems, Differential Equations and Applications (Madrid, Spain). American Institute of Mathematical Sciences, 2015. http://dx.doi.org/10.3934/proc.2015.0019.
Texto completo da fonte