Artigos de revistas sobre o tema "Non oxyde ceramic"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Non oxyde ceramic".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Martinelli, Antonio E., Rubens M. Nascimento, Tarcisio E. de Andrade, Augusto J. A. Buschinelli, Jorge C. L. B. S. Pereira, Sonja M. Gross e Uwe Reisgen. "Wetting Oxide and Non-Oxide Ceramics with Active Metals". Materials Science Forum 730-732 (novembro de 2012): 164–69. http://dx.doi.org/10.4028/www.scientific.net/msf.730-732.164.
Texto completo da fonteGao, Xiong, Jingyi Chen, Xiaotong Chen, Wenqing Wang, Zengchan Li e Rujie He. "How to Improve the Curing Ability during the Vat Photopolymerization 3D Printing of Non-Oxide Ceramics: A Review". Materials 17, n.º 11 (29 de maio de 2024): 2626. http://dx.doi.org/10.3390/ma17112626.
Texto completo da fonteKusunose, Takafumi, e Tohru Sekino. "Non-Oxide Ceramic Nanocomposites with Multifunctionality". Key Engineering Materials 403 (dezembro de 2008): 45–48. http://dx.doi.org/10.4028/www.scientific.net/kem.403.45.
Texto completo da fonteKaradimas, George, e Konstantinos Salonitis. "Ceramic Matrix Composites for Aero Engine Applications—A Review". Applied Sciences 13, n.º 5 (26 de fevereiro de 2023): 3017. http://dx.doi.org/10.3390/app13053017.
Texto completo da fonteBöttcher, Maike, Daisy Nestler, Jonas Stiller e Lothar Kroll. "Injection Moulding of Oxide Ceramic Matrix Composites: Comparing Two Feedstocks". Key Engineering Materials 809 (junho de 2019): 140–47. http://dx.doi.org/10.4028/www.scientific.net/kem.809.140.
Texto completo da fonteMitomo, Mamoru, e Günter Petzow. "Recent Progress in Silicon Nitride and Silicon Carbide Ceramics". MRS Bulletin 20, n.º 2 (fevereiro de 1995): 19–22. http://dx.doi.org/10.1557/s0883769400049162.
Texto completo da fonteWang, Ruzhuan, Dingyu Li e Weiguo Li. "Temperature dependence of hardness prediction for high-temperature structural ceramics and their composites". Nanotechnology Reviews 10, n.º 1 (1 de janeiro de 2021): 586–95. http://dx.doi.org/10.1515/ntrev-2021-0041.
Texto completo da fonteSilvestre, J., N. Silvestre e J. de Brito. "An Overview on the Improvement of Mechanical Properties of Ceramics Nanocomposites". Journal of Nanomaterials 2015 (2015): 1–13. http://dx.doi.org/10.1155/2015/106494.
Texto completo da fonteGalusek, D., Z. Lencés, P. Sajgalík e Ralf Riedel. "Thermal analysis study of polymer-to-ceramic conversion of organosilicon precursors". Journal of Mining and Metallurgy, Section B: Metallurgy 44, n.º 1 (2008): 35–38. http://dx.doi.org/10.2298/jmmb0801035g.
Texto completo da fonteBao, X. Y., Song Li, Xiao Xia Tang e Yue Zhang. "Synthesis of Si-N-C Ceramic Composites by Pyrolysis of Polysilazane and Polycarbosilane". Key Engineering Materials 512-515 (junho de 2012): 306–9. http://dx.doi.org/10.4028/www.scientific.net/kem.512-515.306.
Texto completo da fonteGogotsi, Yury G., e Masahiro Yoshimura. "Water Effects on Corrosion Behavior of Structural Ceramics". MRS Bulletin 19, n.º 10 (outubro de 1994): 39–45. http://dx.doi.org/10.1557/s0883769400048211.
Texto completo da fonteTressler, Richard E. "High-Temperature Stability of Non-Oxide Structural Ceramics". MRS Bulletin 18, n.º 9 (setembro de 1993): 58–63. http://dx.doi.org/10.1557/s0883769400038045.
Texto completo da fonteHwang, Chuan Chou, Chen Chia Chou, Jyh Liang Wang, Tsang Yen Hsieh e Jui Te Tseng. "The Lithium Doping Effect on (Na0.5K0.5)NbO3 Lead-Free Piezo-Ceramics Structure Stability and Ferroelectric Characteristics". Applied Mechanics and Materials 217-219 (novembro de 2012): 682–85. http://dx.doi.org/10.4028/www.scientific.net/amm.217-219.682.
Texto completo da fonteLi, Xingbang, Jingxian Zhang, Yusen Duan, Ning Liu, Jinhua Jiang, Ruixin Ma, Hongan Xi e Xiaoguang Li. "Rheology and Curability Characterization of Photosensitive Slurries for 3D Printing of Si3N4 Ceramics". Applied Sciences 10, n.º 18 (16 de setembro de 2020): 6438. http://dx.doi.org/10.3390/app10186438.
Texto completo da fontePaione, Consiglio M., e Francesco Baino. "Non-Oxide Ceramics for Bone Implant Application: State-of-the-Art Overview with an Emphasis on the Acetabular Cup of Hip Joint Prosthesis". Ceramics 6, n.º 2 (19 de abril de 2023): 994–1016. http://dx.doi.org/10.3390/ceramics6020059.
Texto completo da fonteKodentsov, Alexander. "Diffusion-Limited Reactions of Non-Oxide Ceramics with Transition Metals". Diffusion Foundations 21 (março de 2019): 85–126. http://dx.doi.org/10.4028/www.scientific.net/df.21.85.
Texto completo da fonteMiller, P. R., R. H. J. Hannink e B. C. Muddle. "Quantitative Microanalysis of ZrO2/Non-Oxide Ceramic Composites". Proceedings, annual meeting, Electron Microscopy Society of America 48, n.º 2 (12 de agosto de 1990): 438–39. http://dx.doi.org/10.1017/s0424820100135794.
Texto completo da fonteEgelja, A., J. Gulicovski, A. Devecerski, M. Ninic, A. Radosavljevic-Mihajlovic e B. Matovic. "Preparation of biomorphic SiC ceramics". Science of Sintering 40, n.º 2 (2008): 141–45. http://dx.doi.org/10.2298/sos0802141e.
Texto completo da fonteSarraf, Fateme, Sergey V. Churakov e Frank Clemens. "Preceramic Polymers for Additive Manufacturing of Silicate Ceramics". Polymers 15, n.º 22 (8 de novembro de 2023): 4360. http://dx.doi.org/10.3390/polym15224360.
Texto completo da fonteEl Chawich, Ghenwa, Joelle El Hayek, Vincent Rouessac, Didier Cot, Bertrand Rebière, Roland Habchi, Hélène Garay et al. "Design and Manufacturing of Si-Based Non-Oxide Cellular Ceramic Structures through Indirect 3D Printing". Materials 15, n.º 2 (8 de janeiro de 2022): 471. http://dx.doi.org/10.3390/ma15020471.
Texto completo da fontePfeifer, Judit, Enikõ Horváth, Zófia Vértesy, Péter Arató e Csaba Balázsi. "Chemical Methods for Scanning Electron Microscope Characterization of Non-Oxide Ceramics and Composites". Key Engineering Materials 409 (março de 2009): 382–85. http://dx.doi.org/10.4028/www.scientific.net/kem.409.382.
Texto completo da fonteJothi, Sudagar, Sujith Ravindran e Ravi Kumar. "Corrosion of Polymer-Derived Ceramics in Hydrofluoric Acid and Sodium Salts". Advances in Science and Technology 89 (outubro de 2014): 82–87. http://dx.doi.org/10.4028/www.scientific.net/ast.89.82.
Texto completo da fonteHösel, T., Claas Müller e Holger Reinecke. "Analysis of Surface Reaction Mechanisms on Electrically Non-Conductive Zirconia, Occurring within the Spark Erosion Process Chain". Key Engineering Materials 504-506 (fevereiro de 2012): 1171–76. http://dx.doi.org/10.4028/www.scientific.net/kem.504-506.1171.
Texto completo da fonteZhao, Bingqing, Qibin Liu, Geng Tang e Dunying Wang. "Microstructure and Biocompatibility of Graphene Oxide/BCZT Composite Ceramics via Fast Hot-Pressed Sintering". Coatings 14, n.º 6 (1 de junho de 2024): 689. http://dx.doi.org/10.3390/coatings14060689.
Texto completo da fonteFan, Hong Wei, Bing Hai Lv, Ju Long Yuan, Q. F. Deng e W. F. Yao. "Fillers and Dissolvent in Porous Self-Generating Fine Super-Hard Abrasive Tool". Advanced Materials Research 135 (outubro de 2010): 398–403. http://dx.doi.org/10.4028/www.scientific.net/amr.135.398.
Texto completo da fontePodzorova, L. I., A. A. Il’icheva, N. A. Mikhayilina, O. I. Pen’kova, O. S. Antonova, I. Yu Lebedenko e D. A. Shumskaya. "Ceramic based on complex oxide solid solution of zirconia in tetragonal form for prosthetic dentistry". Perspektivnye Materialy 1 (2024): 30–37. http://dx.doi.org/10.30791/1028-978x-2024-1-30-37.
Texto completo da fonteGadzhiev, Makhach Kh, Arsen E. Muslimov, Damir I. Yusupov, Maksim V. Il’ichev, Yury M. Kulikov, Andrey V. Chistolinov, Ivan D. Venevtsev, Ivan S. Volchkov, Vladimir M. Kanevsky e Alexander S. Tyuftyaev. "Gas-Thermal Spraying Synthesis of β-Ga2O3 Luminescent Ceramics". Materials 17, n.º 24 (12 de dezembro de 2024): 6078. https://doi.org/10.3390/ma17246078.
Texto completo da fonteMelekhin, N. V., M. S. Boldin, A. A. Popov, A. M. Bragov, V. V. Balandin, Vl Vl Balandin, O. G. Krutova, N. N. Berendeev e V. N. Chuvil'deev. "INVESTIGATION OF THE EFFECT OF INTERNAL STRESSES ON THE BALLISTIC RESISTANCE OF FINE-GRAINED ALUMINUM OXIDE OBTAINED BY SPARK PLASMA SINTERING". Problems of Strength and Plasticity 84, n.º 2 (2022): 272–81. http://dx.doi.org/10.32326/1814-9146-2022-84-2-272-281.
Texto completo da fonteButskhrikidze, David. "Diamond Grinding Technology of Flexural Strength Test Pieces of Super hard, Brittle, Composite-ceramic Materials and Technological Equipment". Works of Georgian Technical University, n.º 4(522) (21 de dezembro de 2021): 105–13. http://dx.doi.org/10.36073/1512-0996-2021-4-105-113.
Texto completo da fonteVolosova, Marina A., Anna A. Okunkova, Sergey V. Fedorov, Khaled Hamdy e Mariya A. Mikhailova. "Electrical Discharge Machining Non-Conductive Ceramics: Combination of Materials". Technologies 8, n.º 2 (28 de maio de 2020): 32. http://dx.doi.org/10.3390/technologies8020032.
Texto completo da fonteFedotov, Anatoliy V., Aleksey S. Dorokhov e Dmitriy A. Kovalev. "PROSPECTS FOR THE USE OF CERAMIC MATERIALS FOR THE NEEDS OF THE AGRO-INDUSTRIAL COMPLEX". Tekhnicheskiy servis mashin 2, n.º 143 (junho de 2021): 91–102. http://dx.doi.org/10.22314/2618-8287-2021-59-2-91-102.
Texto completo da fonteCarter, C. Barry. "Dislocations in Ceramics". Microscopy and Microanalysis 4, S2 (julho de 1998): 550–51. http://dx.doi.org/10.1017/s143192760002287x.
Texto completo da fonteGlukharev, Artem, Oleg Glumov, Ivan Smirnov, Evgeniy Boltynjuk, Olga Kurapova e Vladimir Konakov. "Phase Formation and the Electrical Properties of YSZ/rGO Composite Ceramics Sintered Using Silicon Carbide Powder Bed". Applied Sciences 12, n.º 1 (24 de dezembro de 2021): 190. http://dx.doi.org/10.3390/app12010190.
Texto completo da fonteSuastiyanti, Dwita, Sri Yatmani e YuliNurul Maulida. "A CHEMICAL ROUTE TO THE SYNTHESIS OF Bi1-xMgxFeO3 (x=0.1 and x=0.07) NANOPARTICLE WITH ENHANCED ELECTRICAL PROPERTIES AS MULTIFERROIC MATERIAL". International Journal of Engineering Technologies and Management Research 5, n.º 6 (20 de março de 2020): 103–12. http://dx.doi.org/10.29121/ijetmr.v5.i6.2018.250.
Texto completo da fonteOlvera, Mauricio, Marla Berenice Hernández Hernández, Sergio Garcia Villarreal, Eden Amaral Rodríguez Castellanos, Cristian Gomez, Linda Garcia e Josue Amilcar Aguilar Martinez. "Inhibition grain growth and electrical properties by adding In2O3 to SnO2-Co3O4-Ta2O5 ceramics". Revista Mexicana de Física 65, n.º 1 (31 de dezembro de 2018): 25. http://dx.doi.org/10.31349/revmexfis.65.25.
Texto completo da fonteGuerra, J. D. S., Y. Leyet, F. Guerrero, Y. Romaguera, J. Pérez e L. Aguilera. "Microstructure and Electrical Properties of Bi3+ Modified ZnO Ceramics". Key Engineering Materials 434-435 (março de 2010): 318–223. http://dx.doi.org/10.4028/www.scientific.net/kem.434-435.318.
Texto completo da fonteShin, Hyun-Ho, Yolande Berta e Robert F. Speyer. "Effect of processing temperature on interfacial layer formation in SiC fiber-reinforced glass-ceramic composites". Proceedings, annual meeting, Electron Microscopy Society of America 50, n.º 1 (agosto de 1992): 62–63. http://dx.doi.org/10.1017/s0424820100120710.
Texto completo da fonteFontana, Andreia Cristina Brenner, e Alvaro Luiz Mathias. "Characterization and thermal analysis of metalworking sludge as a partial substitute for clays in ceramic production". Revista Gestão & Sustentabilidade 7, n.º 1 (1 de fevereiro de 2025): e14672. https://doi.org/10.36661/2596-142x.2025v7n1.14672.
Texto completo da fonteRondinella, Alfredo, Elia Marin, Brian J. McEntire, Ryan Bock, B. Sonny Bal, Wen Liang Zhu, Kengo Yamamoto e Giuseppe Pezzotti. "Bioceramics are Not Bioinert: The Role of Oxide and Non-Oxide Bioceramics on the Oxidation of UHMWPE Components in Artificial Joints". Key Engineering Materials 782 (outubro de 2018): 165–75. http://dx.doi.org/10.4028/www.scientific.net/kem.782.165.
Texto completo da fonteDunyushkina, Liliya A. "Field-assisted sintering of refractory oxygen-ion and proton conducting ceramics". Electrochemical Materials and Technologies 3, n.º 3 (Special Issue) (2024): 20243040. http://dx.doi.org/10.15826/elmattech.2024.3.040.
Texto completo da fonteMahnicka-Goremikina, Ludmila, Ruta Svinka, Visvaldis Svinka, Liga Grase, Inna Juhnevica, Maris Rundans, Vadims Goremikins, Sanat Tolendiuly e Sergey Fomenko. "Thermal Properties of Porous Mullite Ceramics Modified with Microsized ZrO2 and WO3". Materials 15, n.º 22 (10 de novembro de 2022): 7935. http://dx.doi.org/10.3390/ma15227935.
Texto completo da fonteMen'shikova, V., e L. Demina. "NON-PLASTIC RAW MATERIALS FOR THE PRODUCTION OF CONSTRUCTION CERAMICS". Construction Materials and Products 3, n.º 4 (2 de novembro de 2020): 31–38. http://dx.doi.org/10.34031/2618-7183-2020-3-4-31-38.
Texto completo da fonteNickel, Klaus G. "Corrosion of non-oxide ceramics". Ceramics International 23, n.º 2 (janeiro de 1997): 127–33. http://dx.doi.org/10.1016/s0272-8842(96)00008-9.
Texto completo da fonteSato, Tsugio, e Masahiko Shimada. "Corrosion of Non-oxide Ceramics". CORROSION ENGINEERING 37, n.º 6 (1988): 373–78. http://dx.doi.org/10.3323/jcorr1974.37.6_373.
Texto completo da fontede la Torre, Guido Manuel Olvera, Monika Tatarková, Zuzana Netriová, Martin Barlog, Luca Bertolla, Miroslav Hnatko e Gianmarco Taveri. "Applying the Alkali-Activation Method to Encapsulate Silicon Nitride Particles in a Bioactive Matrix for Augmented Strength and Bioactivity". Materials 17, n.º 2 (9 de janeiro de 2024): 328. http://dx.doi.org/10.3390/ma17020328.
Texto completo da fonteSawaoka, Akira B. "Dynamic consolidation of non-oxide ceramic powders". Physica B+C 139-140 (maio de 1986): 809–12. http://dx.doi.org/10.1016/0378-4363(86)90707-2.
Texto completo da fonteDhanasekar, S., Arul Thayammal Ganesan, Taneti Lilly Rani, Venkata Kamesh Vinjamuri, Medikondu Nageswara Rao, E. Shankar, Dharamvir, P. Suresh Kumar e Wondalem Misganaw Golie. "A Comprehensive Study of Ceramic Matrix Composites for Space Applications". Advances in Materials Science and Engineering 2022 (8 de setembro de 2022): 1–9. http://dx.doi.org/10.1155/2022/6160591.
Texto completo da fonteThaddeus. C. Azubuike, Paulinus. N. Nnabo, Norbert Okechinyere Osonwa, Chukwuemeka Emmanuel Odoala, Emma Onochie Nwabineli e Victor Dorawa Koreyo. "Mineralogical, geochemical and physical properties assessment of clay deposits in Umuoke Obowo Southeastern Nigeria for industrial applications". World Journal of Advanced Research and Reviews 21, n.º 3 (30 de março de 2024): 533–45. http://dx.doi.org/10.30574/wjarr.2024.21.3.0699.
Texto completo da fonteLazar, Iwona, Małgorzata Adamczyk-Habrajska, Marian Pawełczyk, Michał Górny, Anna Zawada e Krystian Roleder. "Piezoelectric and elastic properties of relaxor-like PZT:Ba ceramics". Journal of Electroceramics 40, n.º 3 (20 de fevereiro de 2018): 203–10. http://dx.doi.org/10.1007/s10832-018-0121-6.
Texto completo da fonteHafner, Thomas, Jonas Hafner, Frank Kimm, Vira Bovda, Oleksandr Bovda, Oleksandr Kuprin, Anatoliy Pikalov et al. "Structural and Mechanical Properties of SiC-Rich By-Products of the Metal Grade Si Process". Materials Science Forum 1113 (15 de fevereiro de 2024): 87–94. http://dx.doi.org/10.4028/p-v1q03d.
Texto completo da fonte