Artigos de revistas sobre o tema "Non noble transition metal"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Non noble transition metal".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Caffrey, Andrew P., Patrick E. Hopkins, J. Michael Klopf e Pamela M. Norris. "Thin Film Non-Noble Transition Metal Thermophysical Properties". Microscale Thermophysical Engineering 9, n.º 4 (outubro de 2005): 365–77. http://dx.doi.org/10.1080/10893950500357970.
Texto completo da fonteChen, Ying, Yuling Hu e Gongke Li. "A Review on Non-Noble Metal Substrates for Surface-Enhanced Raman Scattering Detection". Chemosensors 11, n.º 8 (1 de agosto de 2023): 427. http://dx.doi.org/10.3390/chemosensors11080427.
Texto completo da fonteGuo, Xiaotian, Guangxun Zhang, Qing Li, Huaiguo Xue e Huan Pang. "Non-noble metal-transition metal oxide materials for electrochemical energy storage". Energy Storage Materials 15 (novembro de 2018): 171–201. http://dx.doi.org/10.1016/j.ensm.2018.04.002.
Texto completo da fonteMantella, Valeria, Laia Castilla-Amorós e Raffaella Buonsanti. "Shaping non-noble metal nanocrystals via colloidal chemistry". Chemical Science 11, n.º 42 (2020): 11394–403. http://dx.doi.org/10.1039/d0sc03663c.
Texto completo da fonteNiu, Xiangheng, Xin Li, Jianming Pan, Yanfang He, Fengxian Qiu e Yongsheng Yan. "Recent advances in non-enzymatic electrochemical glucose sensors based on non-precious transition metal materials: opportunities and challenges". RSC Advances 6, n.º 88 (2016): 84893–905. http://dx.doi.org/10.1039/c6ra12506a.
Texto completo da fonteAlhassan, Mansur, Mahadi Bin Bahari, Abdelrahman Hamad Khalifa Owgi e Thuan Van Tran. "Non-noble metal catalysts for dry reforming of methane: Challenges, opportunities, and future directions". E3S Web of Conferences 516 (2024): 02002. http://dx.doi.org/10.1051/e3sconf/202451602002.
Texto completo da fonteZhang, Wenqing, Juan Wang, Lanling Zhao, Junru Wang e Mingwen Zhao. "Transition-metal monochalcogenide nanowires: highly efficient bi-functional catalysts for the oxygen evolution/reduction reactions". Nanoscale 12, n.º 24 (2020): 12883–90. http://dx.doi.org/10.1039/d0nr01148g.
Texto completo da fonteNkabinde, Siyabonga S., Patrick V. Mwonga, Siyasanga Mpelane, Zakhele B. Ndala, Tshwarela Kolokoto, Ndivhuwo P. Shumbula, Obakeng Nchoe et al. "Phase-dependent electrocatalytic activity of colloidally synthesized WP and α-WP2 electrocatalysts for hydrogen evolution reaction". New Journal of Chemistry 45, n.º 34 (2021): 15594–606. http://dx.doi.org/10.1039/d1nj00927c.
Texto completo da fonteJin, Xinxin, Yu Jiang, Qi Hu, Shaohua Zhang, Qike Jiang, Li Chen, Ling Xu, Yan Xie e Jiahui Huang. "Highly efficient electrocatalysts with CoO/CoFe2O4 composites embedded within N-doped porous carbon materials prepared by hard-template method for oxygen reduction reaction". RSC Advances 7, n.º 89 (2017): 56375–81. http://dx.doi.org/10.1039/c7ra09517a.
Texto completo da fonteMasferrer-Rius, Eduard, e Robertus J. M. Klein Gebbink. "Non-Noble Metal Aromatic Oxidation Catalysis: From Metalloenzymes to Synthetic Complexes". Catalysts 13, n.º 4 (19 de abril de 2023): 773. http://dx.doi.org/10.3390/catal13040773.
Texto completo da fonteMakvandi, Pooyan, Atefeh Zarepour, Xuanqi Zheng, Tarun Agarwal, Matineh Ghomi, Rossella Sartorius, Ehsan Nazarzadeh Zare et al. "Non-spherical nanostructures in nanomedicine: From noble metal nanorods to transition metal dichalcogenide nanosheets". Applied Materials Today 24 (setembro de 2021): 101107. http://dx.doi.org/10.1016/j.apmt.2021.101107.
Texto completo da fontePark, Hyeonji, Kyeongwon Han, Hyungjin Kim, Jeongeun Song, Yuri Ko e Yukwon Jeon. "Optimization of Oxygen Reduction Activity Via Transition Metal-Oxide Based Composite Electrodes in Acidic Medium". ECS Meeting Abstracts MA2024-02, n.º 25 (22 de novembro de 2024): 2035. https://doi.org/10.1149/ma2024-02252035mtgabs.
Texto completo da fonteDu, Meng, Lingling Guo, Hongju Ren, Xin Tao, Yunan Li, Bing Nan, Rui Si, Chongqi Chen e Lina Li. "Non-Noble FeCrOx Bimetallic Nanoparticles for Efficient NH3 Decomposition". Nanomaterials 13, n.º 7 (5 de abril de 2023): 1280. http://dx.doi.org/10.3390/nano13071280.
Texto completo da fonteSheetal, Pushkar Mehara e Pralay Das. "Methanol as a greener C1 synthon under non-noble transition metal-catalyzed conditions". Coordination Chemistry Reviews 475 (janeiro de 2023): 214851. http://dx.doi.org/10.1016/j.ccr.2022.214851.
Texto completo da fonteAmin, R. S., Amani E. Fetohi, D. Z. Khater, Jin Lin, Yanzhong Wang, Chao Wang e K. M. El-Khatib. "Selenium-transition metal supported on a mixture of reduced graphene oxide and silica template for water splitting". RSC Advances 13, n.º 23 (2023): 15856–71. http://dx.doi.org/10.1039/d3ra01945d.
Texto completo da fonteHao, Zhuo, Yangyang Ma, Yisong Chen, Pei Fu e Pengyu Wang. "Non-Noble Metal Catalysts in Cathodic Oxygen Reduction Reaction of Proton Exchange Membrane Fuel Cells: Recent Advances". Nanomaterials 12, n.º 19 (24 de setembro de 2022): 3331. http://dx.doi.org/10.3390/nano12193331.
Texto completo da fonteXie, Song, Hao Dong, Xiang Peng e Paul K. Chu. "Non-precious Electrocatalysts for the Hydrogen Evolution Reaction". Innovation Discovery 1, n.º 2 (17 de maio de 2024): 11. http://dx.doi.org/10.53964/id.2024011.
Texto completo da fonteLi, Yang, Yao Liu, Jinhui Zhang, Dashuai Wang e Jing Xu. "Rational Design of Non-Noble Metal Single-Atom Catalysts in Lithium–Sulfur Batteries through First Principles Calculations". Nanomaterials 14, n.º 8 (17 de abril de 2024): 692. http://dx.doi.org/10.3390/nano14080692.
Texto completo da fonteMoni, Snehasis, e Bhaskar Mondal. "Correlation between Key Steps and Hydricity in CO2 Hydrogenation Catalysed by Non-Noble Metal PNP-Pincer Complexes". Catalysts 13, n.º 3 (15 de março de 2023): 592. http://dx.doi.org/10.3390/catal13030592.
Texto completo da fonteYang, Yibin, Yingqing Ou, Yang Yang, Xijun Wei, Di Gao, Lin Yang, Yuli Xiong, Hongmei Dong, Peng Xiao e Yunhuai Zhang. "Modulated transition metal–oxygen covalency in the octahedral sites of CoFe layered double hydroxides with vanadium doping leading to highly efficient electrocatalysts". Nanoscale 11, n.º 48 (2019): 23296–303. http://dx.doi.org/10.1039/c9nr08795h.
Texto completo da fonteYan, Liang, Bing Zhang, Shangyou Wu e Jianlin Yu. "A general approach to the synthesis of transition metal phosphide nanoarrays on MXene nanosheets for pH-universal hydrogen evolution and alkaline overall water splitting". Journal of Materials Chemistry A 8, n.º 28 (2020): 14234–42. http://dx.doi.org/10.1039/d0ta05189f.
Texto completo da fonteBudweg, Svenja, Kathrin Junge e Matthias Beller. "Catalytic oxidations by dehydrogenation of alkanes, alcohols and amines with defined (non)-noble metal pincer complexes". Catalysis Science & Technology 10, n.º 12 (2020): 3825–42. http://dx.doi.org/10.1039/d0cy00699h.
Texto completo da fonteZhou, Shanhu, e Jun Hu. "Enhancing perpendicular magnetocrystalline anisotropy in Fe ultrathin films by non-noble transition-metal substrate". International Journal of Modern Physics C 31, n.º 09 (27 de agosto de 2020): 2050134. http://dx.doi.org/10.1142/s012918312050134x.
Texto completo da fonteOgo, Shuhei, e Yasushi Sekine. "Recent progress in ethanol steam reforming using non-noble transition metal catalysts: A review". Fuel Processing Technology 199 (março de 2020): 106238. http://dx.doi.org/10.1016/j.fuproc.2019.106238.
Texto completo da fonteWang, Yijing. "Rational Design of HighPerformance M-N-C Single Atom Catalysts". Journal of Mineral and Material Science (JMMS) 4, n.º 5 (4 de dezembro de 2023): 1–3. http://dx.doi.org/10.54026/jmms/1074.
Texto completo da fonteLozano, Luis A., Betina M. C. Faroldi, María A. Ulla e Juan M. Zamaro. "Metal–Organic Framework-Based Sustainable Nanocatalysts for CO Oxidation". Nanomaterials 10, n.º 1 (17 de janeiro de 2020): 165. http://dx.doi.org/10.3390/nano10010165.
Texto completo da fontePan, Jing, Rui Wang, Xiaoyong Xu, Jingguo Hu e Liang Ma. "Transition metal doping activated basal-plane catalytic activity of two-dimensional 1T’-ReS2 for hydrogen evolution reaction: a first-principles calculation study". Nanoscale 11, n.º 21 (2019): 10402–9. http://dx.doi.org/10.1039/c9nr00997c.
Texto completo da fonteLiu, Taizhe. "Performance of recent transition metal cocatalysts under hydrogen evolution reaction". Applied and Computational Engineering 7, n.º 1 (21 de julho de 2023): 136–46. http://dx.doi.org/10.54254/2755-2721/7/20230407.
Texto completo da fonteRedina, Elena, Olga Tkachenko e Tapio Salmi. "Recent Advances in C5 and C6 Sugar Alcohol Synthesis by Hydrogenation of Monosaccharides and Cellulose Hydrolytic Hydrogenation over Non-Noble Metal Catalysts". Molecules 27, n.º 4 (17 de fevereiro de 2022): 1353. http://dx.doi.org/10.3390/molecules27041353.
Texto completo da fonteSong, Meixiu, Yanhui Song, Wenbo Sha, Bingshe Xu, Junjie Guo e Yucheng Wu. "Recent Advances in Non-Precious Transition Metal/Nitrogen-doped Carbon for Oxygen Reduction Electrocatalysts in PEMFCs". Catalysts 10, n.º 1 (20 de janeiro de 2020): 141. http://dx.doi.org/10.3390/catal10010141.
Texto completo da fontePerović, Klara, Silvia Morović, Ante Jukić e Krešimir Košutić. "Alternative to Conventional Solutions in the Development of Membranes and Hydrogen Evolution Electrocatalysts for Application in Proton Exchange Membrane Water Electrolysis: A Review". Materials 16, n.º 18 (20 de setembro de 2023): 6319. http://dx.doi.org/10.3390/ma16186319.
Texto completo da fonteKuang, Guanghua, Guangyuan Liu, Xingxing Zhang, Naihao Lu, Yiyuan Peng, Qiang Xiao e Yirong Zhou. "Directing-Group-Assisted Transition-Metal-Catalyzed Direct C–H Oxidative Annulation of Arenes with Alkynes for Facile Construction of Various Oxygen Heterocycles". Synthesis 52, n.º 07 (10 de fevereiro de 2020): 993–1006. http://dx.doi.org/10.1055/s-0039-1690816.
Texto completo da fonteSelvam, Praveen Kumar, Muhammad Sohail Riaz e Pau Farràs Costa. "Non-Noble Transition Metal-Based Electrocatalysts for Green Hydrogen Production from Anion Exchange Membrane (AEM) Seawater Electrolyzer". ECS Meeting Abstracts MA2023-02, n.º 42 (22 de dezembro de 2023): 2154. http://dx.doi.org/10.1149/ma2023-02422154mtgabs.
Texto completo da fonteBarshick, C. M., D. H. Smith, E. Johnson, F. L. King, T. Bastug e B. Fricke. "Periodic Nature of Metal-Noble Gas Adduct Ions in Glow Discharge Mass Spectrometry". Applied Spectroscopy 49, n.º 7 (julho de 1995): 885–89. http://dx.doi.org/10.1366/0003702953964840.
Texto completo da fonteKim, Jeong-Hyun, Jeong-Gyu Lee e Min-Jae Choi. "Progress of Metal Chalcogenides as Catalysts for Efficient Electrosynthesis of Hydrogen Peroxide". Materials 17, n.º 17 (29 de agosto de 2024): 4277. http://dx.doi.org/10.3390/ma17174277.
Texto completo da fonteWu, Fei, Yueying Wang, Shunxin Fei e Gang Zhu. "Co-Promoted CoNi Bimetallic Nanocatalyst for the Highly Efficient Catalytic Hydrogenation of Olefins". Nanomaterials 13, n.º 13 (26 de junho de 2023): 1939. http://dx.doi.org/10.3390/nano13131939.
Texto completo da fonteTao, Chong, Limo He, Xuechen Zhou, Hanjian Li, Qiangqiang Ren, Hengda Han, Song Hu, Sheng Su, Yi Wang e Jun Xiang. "Review of Emission Characteristics and Purification Methods of Volatile Organic Compounds (VOCs) in Cooking Oil Fume". Processes 11, n.º 3 (27 de fevereiro de 2023): 705. http://dx.doi.org/10.3390/pr11030705.
Texto completo da fonteYoon, Seo Jeong, Se Jung Lee, Min Hui Kim, Hui Ae Park, Hyo Seon Kang, Seo-Yoon Bae e In-Yup Jeon. "Recent Tendency on Transition-Metal Phosphide Electrocatalysts for the Hydrogen Evolution Reaction in Alkaline Media". Nanomaterials 13, n.º 18 (21 de setembro de 2023): 2613. http://dx.doi.org/10.3390/nano13182613.
Texto completo da fonteGuo, Yajie, Yongjie Liu, Yanrong Liu, Chunrui Zhang, Kelun Jia, Jibo Su e Ke Wang. "The High Electrocatalytic Performance of NiFeSe/CFP for Hydrogen Evolution Reaction Derived from a Prussian Blue Analogue". Catalysts 12, n.º 7 (4 de julho de 2022): 739. http://dx.doi.org/10.3390/catal12070739.
Texto completo da fonteLi, Jiangtian, Deryn Chu, Connor Poland, Cooper Smith, Enoch A. Nagelli e Victor Jaffett. "XPS Depth Profiling of Surface Restructuring Responsible for Hydrogen Evolution Reaction Activity of Nickel Sulfides in Alkaline Electrolyte". Materials 18, n.º 3 (25 de janeiro de 2025): 549. https://doi.org/10.3390/ma18030549.
Texto completo da fonteYang, Kaixuan, Naimeng Chen, Xiaomiao Guo, Ruoqi Zhang, Xiaoyu Sheng, Hui Ge, Zhiguo Zhu, Hengquan Yang e Hongying Lü. "Phase-Controlled Cobalt Catalyst Boosting Hydrogenation of 5-Hydroxymethylfurfural to 2,5-Dimethylfuran". Molecules 28, n.º 13 (22 de junho de 2023): 4918. http://dx.doi.org/10.3390/molecules28134918.
Texto completo da fonteWu, Ling-Wei, Yan-Fang Yao, Shi-Yin Xu, Xu-You Cao, Yan-Wei Ren, Li-Ping Si e Hai-Yang Liu. "Electrocatalytic Hydrogen Evolution of Transition Metal (Fe, Co and Cu)–Corrole Complexes Bearing an Imidazole Group". Catalysts 14, n.º 1 (19 de dezembro de 2023): 5. http://dx.doi.org/10.3390/catal14010005.
Texto completo da fonteNing, Cai, Yadong Zhang, Zhaoshun Meng, Chuanyun Xiao e Ruifeng Lu. "Computational Screening of Single Non-Noble Transition-Metal Atoms Confined Inside Boron Nitride Nanotubes for CO Oxidation". Journal of Physical Chemistry C 124, n.º 3 (26 de dezembro de 2019): 2030–38. http://dx.doi.org/10.1021/acs.jpcc.9b10585.
Texto completo da fonteKumaran, Yamini, Haralabos Efstathiadis e Iulian Gherasoiu. "Engineering Transition Metals As Noble-Metal Free Bifunctional Electrode for Overall Water Splitting". ECS Meeting Abstracts MA2022-02, n.º 60 (9 de outubro de 2022): 2523. http://dx.doi.org/10.1149/ma2022-02602523mtgabs.
Texto completo da fonteZhiquan Hou, Wenbo Pei, Xing Zhang, Yuxi Liu, Jiguang Deng e Hongxing Dai. "Oxidative Removal of Volatile Organic Compounds over the Supported Bimetallic Catalysts". Global Environmental Engineers 7 (16 de julho de 2020): 1–27. http://dx.doi.org/10.15377/2410-3624.2020.07.1.
Texto completo da fonteAvinash, Kiran, K. R. Rohit e Gopinathan Anilkumar. "Iron, Cobalt and Nickel-catalyzed Hydrosilylative Reduction of Functional Groups". Current Catalysis 10, n.º 3 (dezembro de 2021): 179–205. http://dx.doi.org/10.2174/2211544710666211108095557.
Texto completo da fonteLi, Jiangtian, Deryn Chu, David R. Baker e Rongzhong Jiang. "(Invited) Regulating Electronic Structure for Clean Energy Powered Water Electrolysis on Non-Precious Catalysts". ECS Meeting Abstracts MA2022-01, n.º 38 (7 de julho de 2022): 1690. http://dx.doi.org/10.1149/ma2022-01381690mtgabs.
Texto completo da fonteZhou, Zhaoyu, Yongsheng Jia, Qiang Wang, Zhongyu Jiang, Junwu Xiao e Limin Guo. "Recent Progress on Molybdenum Carbide-Based Catalysts for Hydrogen Evolution: A Review". Sustainability 15, n.º 19 (7 de outubro de 2023): 14556. http://dx.doi.org/10.3390/su151914556.
Texto completo da fonteCarroll, Zachary Liam, Michel Haché, Bowen Wang, Lixin Chen, Uwe Erb, Steven Thorpe e Yu Zou. "Electrodeposition of Non-Noble High-Entropy Alloys for Effective Hydrogen Evolution Electrocatalysts". ECS Meeting Abstracts MA2024-01, n.º 34 (9 de agosto de 2024): 1874. http://dx.doi.org/10.1149/ma2024-01341874mtgabs.
Texto completo da fonteTran, Phong D., Lifei Xi, Sudip K. Batabyal, Lydia H. Wong, James Barber e Joachim Say Chye Loo. "Enhancing the photocatalytic efficiency of TiO2 nanopowders for H2 production by using non-noble transition metal co-catalysts". Physical Chemistry Chemical Physics 14, n.º 33 (2012): 11596. http://dx.doi.org/10.1039/c2cp41450c.
Texto completo da fonte