Literatura científica selecionada sobre o tema "Non-lymphoid organs"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Non-lymphoid organs".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Non-lymphoid organs"
Jandrić-Kočić, Marijana. "Recirculation of naive T lymphocytes". Medicinski glasnik Specijalne bolnice za bolesti štitaste žlezde i bolesti metabolizma 27, n.º 86 (2022): 25–48. http://dx.doi.org/10.5937/mgiszm2286025j.
Texto completo da fonteParker, George A., e Catherine A. Picut. "Immune Functioning in Non lymphoid Organs: The Liver". Toxicologic Pathology 40, n.º 2 (16 de novembro de 2011): 237–47. http://dx.doi.org/10.1177/0192623311428475.
Texto completo da fonteFeizi, Neda, Neda Feizi, Gang Zhang, Latha Halesha, Khodor Abou Daya e Martin H. Oberbarnscheidt. "Tertiary Lymphoid Organs promote allograft rejection". Journal of Immunology 212, n.º 1_Supplement (1 de maio de 2024): 0321_5062. http://dx.doi.org/10.4049/jimmunol.212.supp.0321.5062.
Texto completo da fonteWeninger, Wolfgang, Maté Biro e Rohit Jain. "Leukocyte migration in the interstitial space of non-lymphoid organs". Nature Reviews Immunology 14, n.º 4 (7 de março de 2014): 232–46. http://dx.doi.org/10.1038/nri3641.
Texto completo da fontePreziuso, S., GE Magi, S. Mari e G. Renzoni. "Detection of Visna Maedi virus in mesenteric lymph nodes and in other lymphoid tissues of sheep three years after respiratory infection". Veterinární Medicína 58, No. 7 (20 de agosto de 2013): 359–63. http://dx.doi.org/10.17221/6916-vetmed.
Texto completo da fonteTkachev, Victor, Scott Nicholas Furlan, E. Lake Potter, Betty H. Zheng, Daniel J. Hunt, Lucrezia Colonna, Agne Taraseviciute et al. "Delineating tissue-specific alloimmunity during acute GVHD". Journal of Immunology 200, n.º 1_Supplement (1 de maio de 2018): 55.1. http://dx.doi.org/10.4049/jimmunol.200.supp.55.1.
Texto completo da fonteHotchkiss, R., M. Hiramatsu, P. Cobb, T. Buchman e I. Karl. "CECAL LIGATION AND PUNCTURE (CLP) IN MICE TRIGGERS APOPTOSIS IN LYMPHOID AND NON-LYMPHOID ORGANS." Shock 5 (junho de 1996): 71. http://dx.doi.org/10.1097/00024382-199606002-00226.
Texto completo da fonteJia, Cunxin, Yujie Zhou, Xiaohuan Huang, Xi Peng, Linyan Liu, Linyan Zhou, Li Jin, Hongjuan Shi, Jing Wei e Deshou Wang. "The cellular protein expression of Foxp3 in lymphoid and non-lymphoid organs of Nile tilapia". Fish & Shellfish Immunology 45, n.º 2 (agosto de 2015): 300–306. http://dx.doi.org/10.1016/j.fsi.2015.03.021.
Texto completo da fonteFinke, Daniela, e Hans Acha-Orbea. "Differential migration ofin vivo primed B and T lymphocytes to lymphoid and non-lymphoid organs". European Journal of Immunology 31, n.º 9 (setembro de 2001): 2603–11. http://dx.doi.org/10.1002/1521-4141(200109)31:9<2603::aid-immu2603>3.0.co;2-8.
Texto completo da fonteSainova, Iskra, Vera Kolyovska, Desislava Drenska, Dimitar Maslarov, Andrey Petrov, Dimitrina Dimitrova-Dikanarova e Tzvetanka Markova. "Production of anti-GM3, anti-GM1, and anti-GD1A antibodies by non-lymphoid cells, tissues, and organs". Pharmacia 71 (1 de novembro de 2024): 1–8. http://dx.doi.org/10.3897/pharmacia.71.e138022.
Texto completo da fonteTeses / dissertações sobre o assunto "Non-lymphoid organs"
Roubanis, Aristeidis. "Investigating the metabolism of regulatory T cells in non-lymphoid tissues using a genetic approach and an in vivo adaptation of SCENITH". Electronic Thesis or Diss., Sorbonne université, 2024. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2024SORUS321.pdf.
Texto completo da fonteRegulation of cellular metabolism is a central element governing the fate and function of T cells. Among T cells, CD4+ Foxp3+ regulatory T cells (Tregs) are critical for the maintenance of self-tolerance and immune homeostasis. Tregs are present in lymphoid tissues where they control immune responses and in various non-lymphoid tissues where they maintain tissue homeostasis. Precursors of Tregs colonising non- lymphoid tissues are present in the spleen and lymph nodes and undergo developmental differentiation steps. However, the mechanisms by which Tregs colonise non-lymphoid tissues and how tissue Tregs metabolically adapt to varying microenvironments across tissues remain poorly understood partly because of experimental difficulties in assessing the metabolic profiles of rare cells in physiological conditions. To investigate the metabolism of Tregs, mice conditionally knocked out for the metabolic checkpoint Liver kinase B1 (LKB1) (cKO) were generated. These mice have a significantly reduced lifespan due to a systemic hyperinflammatory disorder, despite having relatively normal numbers of Tregs in the spleen and lymph nodes. LKB1, primarily known for activating AMPK and modulating mitochondrial metabolism, appears crucial for the colonisation of NLT by Tregs. Further analysis revealed the absence of the mature tissue Treg precursors in the spleen of cKO mice, suggesting a block of tissue Treg differentiation in the absence of LKB1.Recent advances, such as the SCENITH technique, allow the study of the metabolism of rare cells by measuring protein translation as an indicator of energy consumption by flow cytometry. However, this technique traditionally requires cells to be cultured ex vivo or in vitro, which can alter their metabolism. To address this issue, an innovative method derived from SCENITH was implemented to investigate the cellular metabolism of T cells in the spleen and lungs at steady state. Compared to classical SCENITH, this new technique also helps improve cell viability, in particular for Tregs. Results obtained with the in vivo SCENITH revealed that conventional T cells and Tregs share similar metabolic profiles in the spleen and lungs. Notably, lung T cell metabolism relies mainly on oxidative phosphorylation at steady state, while spleen T cells also utilise glycolysis. Additionally, maintaining Foxp3 expression in Tregs is influenced by metabolic inhibitors affecting protein translation and energy availability. Our findings highlight the role of LKB1 in the differentiation and colonisation of tissue Tregs and underscore the importance of metabolic adaptation in tissue Treg differentiation. The new in vivo SCENITH technique may provide valuable insights to assess the metabolic status of rare T cells in their natural environments
Roake, Justin Alan. "Studies on the properties and migration of non-lymphoid dendritic cells". Thesis, University of Oxford, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.317810.
Texto completo da fonteLivros sobre o assunto "Non-lymphoid organs"
Smedby, Karin Ekström, Mads Melbye e Hans-Olov Adami. Non-Hodgkin Lymphoma. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780190676827.003.0027.
Texto completo da fonteBlaser, Annika Reintam, e Adam M. Deane. Normal physiology of the gastrointestinal system. Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780199600830.003.0172.
Texto completo da fonteAlbert, Tyler J., e Erik R. Swenson. The blood cells and blood count. Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780199600830.003.0265.
Texto completo da fonteCapítulos de livros sobre o assunto "Non-lymphoid organs"
Rao, Abdul S., Justin A. Roake, Christian P. Larsen, Deborah F. Hankins, Peter J. Morris e Jonathan M. Austyn. "Isolation of Dendritic Leukocytes from Non-Lymphoid Organs". In Advances in Experimental Medicine and Biology, 507–12. Boston, MA: Springer US, 1993. http://dx.doi.org/10.1007/978-1-4615-2930-9_85.
Texto completo da fonteWalker, Brian R. "Modulation of glucocorticoid activity by metabolism of steroids in non-lymphoid organs". In Steroid Hormones and the T-Cell Cytokine Profile, 71–99. London: Springer London, 1997. http://dx.doi.org/10.1007/978-1-4471-0931-0_4.
Texto completo da fonteKirsch, Brian James, Shu-Jyuan Chang, Michael James Betenbaugh e Anne Le. "Non-Hodgkin Lymphoma Metabolism". In The Heterogeneity of Cancer Metabolism, 103–16. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-65768-0_7.
Texto completo da fonteAndrabi, Syedah Asma, Nawab Nashiruddullah, Shafiqur Rahman, Dawoud Aamir e afrin Ara Ahmed. "IMPORTANT NON-ONCOGENIC IMMUNO SUPPRESSIVE VIRAL DISEASES OF CHICKENS". In Futuristic Trends in Agriculture Engineering & Food Sciences Volume 3 Book 3, 88–108. Iterative International Publisher, Selfypage Developers Pvt Ltd, 2024. http://dx.doi.org/10.58532/v3bcag3p1ch8.
Texto completo da fonteWoodhouse, Andrew. "Case 38". In Oxford Case Histories in Infectious Diseases and Microbiology, editado por Andrew Woodhouse, 261–66. Oxford University Press, 2020. http://dx.doi.org/10.1093/med/9780198846482.003.0038.
Texto completo da fonteSepulveda, Antonia R. "Mucosa-Associated Lymphoid Tissue Lymphomas". In Gastrointestinal Oncology, 803–11. Oxford University PressNew York, NY, 2003. http://dx.doi.org/10.1093/oso/9780195133721.003.0066.
Texto completo da fonteNaresh, Kikkeri N. "Gastrointestinal lymphomas". In Oxford Textbook of Medicine, editado por Jack Satsangi, 2892–902. Oxford University Press, 2020. http://dx.doi.org/10.1093/med/9780198746690.003.0301.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Non-lymphoid organs"
Rosenbluth, Michael J., Wilbur A. Lam e Daniel A. Fletcher. "Contribution of Cell Mechanics to Acute Leukemia". In ASME 2004 International Mechanical Engineering Congress and Exposition. ASMEDC, 2004. http://dx.doi.org/10.1115/imece2004-59881.
Texto completo da fonte