Literatura científica selecionada sobre o tema "Non-Kähler geometry"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Non-Kähler geometry".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Non-Kähler geometry"
Dai, Song. "Lower order tensors in non-Kähler geometry and non-Kähler geometric flow". Annals of Global Analysis and Geometry 50, n.º 4 (6 de junho de 2016): 395–418. http://dx.doi.org/10.1007/s10455-016-9518-0.
Texto completo da fonteBroder, Kyle. "The Schwarz lemma in Kähler and non-Kähler geometry". Asian Journal of Mathematics 27, n.º 1 (2023): 121–34. http://dx.doi.org/10.4310/ajm.2023.v27.n1.a5.
Texto completo da fonteFino, Anna, e Adriano Tomassini. "Non-Kähler solvmanifolds with generalized Kähler structure". Journal of Symplectic Geometry 7, n.º 2 (2009): 1–14. http://dx.doi.org/10.4310/jsg.2009.v7.n2.a1.
Texto completo da fonteVerbitsky, M. S., V. Vuletescu e L. Ornea. "Classification of non-Kähler surfaces and locally conformally Kähler geometry". Russian Mathematical Surveys 76, n.º 2 (1 de abril de 2021): 261–89. http://dx.doi.org/10.1070/rm9858.
Texto completo da fonteZheng, Fangyang. "Some recent progress in non-Kähler geometry". Science China Mathematics 62, n.º 11 (22 de maio de 2019): 2423–34. http://dx.doi.org/10.1007/s11425-019-9528-1.
Texto completo da fonteAlessandrini, Lucia, e Giovanni Bassanelli. "Positive $$\partial \bar \partial - closed$$ currents and non-Kähler geometrycurrents and non-Kähler geometry". Journal of Geometric Analysis 2, n.º 4 (julho de 1992): 291–316. http://dx.doi.org/10.1007/bf02934583.
Texto completo da fonteCortés, Vicente, e Liana David. "Twist, elementary deformation and K/K correspondence in generalized geometry". International Journal of Mathematics 31, n.º 10 (setembro de 2020): 2050078. http://dx.doi.org/10.1142/s0129167x20500780.
Texto completo da fonteDunajski, Maciej. "Null Kähler Geometry and Isomonodromic Deformations". Communications in Mathematical Physics 391, n.º 1 (8 de dezembro de 2021): 77–105. http://dx.doi.org/10.1007/s00220-021-04270-0.
Texto completo da fonteYANG, BO. "A CHARACTERIZATION OF NONCOMPACT KOISO-TYPE SOLITONS". International Journal of Mathematics 23, n.º 05 (maio de 2012): 1250054. http://dx.doi.org/10.1142/s0129167x12500541.
Texto completo da fonteYau, Shing-Tung. "Existence of canonical metrics in non-Kähler geometry". Notices of the International Congress of Chinese Mathematicians 9, n.º 1 (2021): 1–10. http://dx.doi.org/10.4310/iccm.2021.v9.n1.a1.
Texto completo da fonteTeses / dissertações sobre o assunto "Non-Kähler geometry"
Lee, Hwasung. "Strominger's system on non-Kähler hermitian manifolds". Thesis, University of Oxford, 2011. http://ora.ox.ac.uk/objects/uuid:d3956c4f-c262-4bbf-8451-8dac35f6abef.
Texto completo da fonteProto, Yann. "Geometry of heterotic flux compactifications". Electronic Thesis or Diss., Sorbonne université, 2024. http://www.theses.fr/2024SORUS125.
Texto completo da fonteThis thesis delves into recent developments in the study of flux compactifications of the heterotic string theory. We primarily focus on four-dimensional Minkowski compactifications with spacetime supersymmetry, whose underlying six-dimensional geometries are, in the presence of torsion, non-Kähler SU(3) structure manifolds. We develop several methods to analyze these compactifications from both supergravity and worldsheet perspectives. We investigate geometric flows in non-Kähler geometry that play a central role in the study of the Hull-Strominger equations, and elucidate their supersymmetry properties. We present a class of orbifold backgrounds that can be described using torsional linear sigma models with (0,2) worldsheet supersymmetry, and obtain new examples of heterotic flux backgrounds. Finally, we explore the implications of Narain T-duality for the moduli space of torsional heterotic vacua, and find evidence for topology change and Kähler/non-Kähler dualities
Göteman, Malin. "The Complex World of Superstrings : On Semichiral Sigma Models and N=(4,4) Supersymmetry". Doctoral thesis, Uppsala universitet, Teoretisk fysik, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-183407.
Texto completo da fonteBattisti, Laurent. "Variétés toriques à éventail infini et construction de nouvelles variétés complexes compactes : quotients de groupes de Lie complexes et discrets". Thesis, Aix-Marseille, 2012. http://www.theses.fr/2012AIXM4714/document.
Texto completo da fonteIn this thesis we study certain classes of complex compact non-Kähler manifolds. We first look at the class of Kato surfaces. Given a minimal Kato surface S, D the divisor consisting of all rational curves of S and ϖ : Š ͢ S the universal covering of S, we show that Š \ϖ-1 (D) is a Stein manifold. LVMB manifolds are the second class of non-Kähler manifolds that we study here. These complex compact manifolds are obtained as quotient of an open subset U of Pn by a closed Lie subgroup G of (C*)n of dimension m. We reformulate this procedure by replacing U by the choice of a subfan of the fan of Pn and G by a suitable vector subspace of R^{n}. We then build new complex compact non Kähler manifolds by combining a method of Sankaran and the one giving LVMB manifolds. Sankaran considers an open subset U of a toric manifold whose quotient by a discrete group W is a compact manifold. Here, we endow some toric manifold Y with the action of a Lie subgroup G of (C^{*})^{n} such that the quotient X of Y by G is a manifold, and we take the quotient of an open subset of X by a discrete group W similar to Sankaran's one.Finally, we consider OT manifolds, another class of non-Kähler manifolds, and we show that their algebraic dimension is 0. These manifolds are obtained as quotient of an open subset of C^{m} by the semi-direct product of the lattice of integers of a finite field extension K over Q and a subgroup of units of K well-chosen
Knauf, Anke [Verfasser]. "Geometric transitions on non-Kähler manifolds / vorgelegt von Anke Knauf". 2006. http://d-nb.info/979527503/34.
Texto completo da fonteLivros sobre o assunto "Non-Kähler geometry"
Dinew, Sławomir, Sebastien Picard, Andrei Teleman e Alberto Verjovsky. Complex Non-Kähler Geometry. Editado por Daniele Angella, Leandro Arosio e Eleonora Di Nezza. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-25883-2.
Texto completo da fonteAngella, Daniele. Cohomological Aspects in Complex Non-Kähler Geometry. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-02441-7.
Texto completo da fonteAngella, Daniele. Cohomological Aspects in Complex Non-Kähler Geometry. Springer London, Limited, 2013.
Encontre o texto completo da fonteAngella, Daniele, Sławomir Dinew, Sebastien Picard, Andrei Teleman, Alberto Verjovsky, Leandro Arosio e Eleonora Di Nezza. Complex Non-Kähler Geometry: Cetraro, Italy 2018. Springer, 2019.
Encontre o texto completo da fonteCapítulos de livros sobre o assunto "Non-Kähler geometry"
Dinew, Sławomir. "Lectures on Pluripotential Theory on Compact Hermitian Manifolds". In Complex Non-Kähler Geometry, 1–56. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-25883-2_1.
Texto completo da fontePicard, Sébastien. "Calabi–Yau Manifolds with Torsion and Geometric Flows". In Complex Non-Kähler Geometry, 57–120. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-25883-2_2.
Texto completo da fonteTeleman, Andrei. "Non-Kählerian Compact Complex Surfaces". In Complex Non-Kähler Geometry, 121–61. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-25883-2_3.
Texto completo da fonteVerjovsky, Alberto. "Intersection of Quadrics in ℂ n $$\mathbb {C}^n$$ , Moment-Angle Manifolds, Complex Manifolds and Convex Polytopes". In Complex Non-Kähler Geometry, 163–240. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-25883-2_4.
Texto completo da fonteTian, Gang. "Kähler-Einstein metrics with non-positive scalar curvature". In Canonical Metrics in Kähler Geometry, 43–56. Basel: Birkhäuser Basel, 2000. http://dx.doi.org/10.1007/978-3-0348-8389-4_5.
Texto completo da fonteAngella, Daniele. "Preliminaries on (Almost-)Complex Manifolds". In Cohomological Aspects in Complex Non-Kähler Geometry, 1–63. Cham: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-02441-7_1.
Texto completo da fonteAngella, Daniele. "Cohomology of Complex Manifolds". In Cohomological Aspects in Complex Non-Kähler Geometry, 65–94. Cham: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-02441-7_2.
Texto completo da fonteAngella, Daniele. "Cohomology of Nilmanifolds". In Cohomological Aspects in Complex Non-Kähler Geometry, 95–150. Cham: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-02441-7_3.
Texto completo da fonteAngella, Daniele. "Cohomology of Almost-Complex Manifolds". In Cohomological Aspects in Complex Non-Kähler Geometry, 151–232. Cham: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-02441-7_4.
Texto completo da fonteLiu, Xu. "Compact Smooth but Non-complex Complements of Complete Kähler Manifolds". In Complex Analysis and Geometry, 235–39. Tokyo: Springer Japan, 2015. http://dx.doi.org/10.1007/978-4-431-55744-9_17.
Texto completo da fonte