Literatura científica selecionada sobre o tema "Nombres de Fibonacci"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Nombres de Fibonacci".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Nombres de Fibonacci"
FROUGNY, CHRISTIANE, e JACQUES SAKAROVITCH. "AUTOMATIC CONVERSION FROM FIBONACCI REPRESENTATION TO REPRESENTATION IN BASE φ, AND A GENERALIZATION". International Journal of Algebra and Computation 09, n.º 03n04 (junho de 1999): 351–84. http://dx.doi.org/10.1142/s0218196799000230.
Texto completo da fonteBugeaud, Yann, Maurice Mignotte e Samir Siksek. "Sur les nombres de Fibonacci de la forme". Comptes Rendus Mathematique 339, n.º 5 (setembro de 2004): 327–30. http://dx.doi.org/10.1016/j.crma.2004.06.007.
Texto completo da fonteBelbachir, Hacène, e Assia Fettouma Tebtoub. "Les nombres de Stirling associés avec succession d'ordre 2, nombres de Fibonacci–Stirling et unimodalité". Comptes Rendus Mathematique 353, n.º 9 (setembro de 2015): 767–71. http://dx.doi.org/10.1016/j.crma.2015.06.008.
Texto completo da fonteRIVOAL, TANGUY. "ON THE BITS COUNTING FUNCTION OF REAL NUMBERS". Journal of the Australian Mathematical Society 85, n.º 1 (agosto de 2008): 95–111. http://dx.doi.org/10.1017/s1446788708000591.
Texto completo da fonteLinton, Stephen, James Propp, Tom Roby e Julian West. "Equivalence Relations of Permutations Generated by Constrained Transpositions". Discrete Mathematics & Theoretical Computer Science DMTCS Proceedings vol. AN,..., Proceedings (1 de janeiro de 2010). http://dx.doi.org/10.46298/dmtcs.2841.
Texto completo da fonteBattaglino, Daniela, Jean-Marc Fédou, Simone Rinaldi e Samanta Socci. "The number of $k$-parallelogram polyominoes". Discrete Mathematics & Theoretical Computer Science DMTCS Proceedings vol. AS,..., Proceedings (1 de janeiro de 2013). http://dx.doi.org/10.46298/dmtcs.2370.
Texto completo da fonteTeses / dissertações sobre o assunto "Nombres de Fibonacci"
Plet, Sébastien. "Mesures et densités des nombres premiers dans les suites récurrentes linéaires". Caen, 2006. http://www.theses.fr/2006CAEN2069.
Texto completo da fonteWe give a general construction of probability measures on [0, 1] linked with representations of real numbers in a variable basis and with some so-called density function. This general constructions is shown to naturally associate a probability space to a profinite group and, in particular, to define a probability measure on the Galois group of an infinite Galois extension of a number field. Our probabilistic formalism is then applied on two distinct problems. First, we solve conjectures of Paul Bruckman and Peter Anderson on the rank of an integer in the Fibonacci sequence. Secondly, we compute the density of maximal prime divisors for an infinite family of third order integral linear recurring sequences
Hong, Haojie. "Grands diviseurs premiers de suites récurrentes linéaires". Electronic Thesis or Diss., Bordeaux, 2024. http://www.theses.fr/2024BORD0107.
Texto completo da fonteThis thesis is about lower bounds for the biggest prime divisors of linear recurrent sequences. First, we obtain a uniform and explicit version of Stewart’s seminal result about prime divisors of Lucas sequences. We show that constants in Stewart’s theorem depend only on the quadratic field corresponding to a Lucas sequence. Then we study the prime divisors of orders of elliptic curves over finite fields. Fixing an elliptic curve over Fq with q power of a prime number, the sequence #E(Fqn) happens to be a linear recurrent sequence of order 4. Let P(x) be the biggest prime dividing x. A lower bound of P(#E(Fqn)) is given by using Stewart’s argument and some more delicate discussions. Next, motivated by our previous two projects, we can show that when γ is an algebraic number of degree 2 and not a root of unity, there exists a prime ideal p of Q(γ) satisfying νp(γn − 1) ≥ 1, such that the rational prime p underlying p grows quicker than n. Finally, we consider a numerical application of Stewart’s method to Fibonacci numbers Fn. Relatively sharp bounds for P(Fn) are obtained. All of the above work relies heavily on Yu’s estimate for p-adic logarithmic forms
Livros sobre o assunto "Nombres de Fibonacci"
Fibonacci, El Somiador De Nombres. Editorial Juventud, S.A., 2011.
Encontre o texto completo da fonteLines, Malcolm E. Dites un chiffre : Idées et problèmes mathématiques qui défient notre intelligence. Flammarion, 2002.
Encontre o texto completo da fonteCapítulos de livros sobre o assunto "Nombres de Fibonacci"
"FIBONACCI AND ARABIC MATHEMATICS". In Arithmétique, Algèbre et Théorie des Nombres, 523–36. De Gruyter, 2023. http://dx.doi.org/10.1515/9783110784718-020.
Texto completo da fonte"FIBONACCI AND THE LATIN EXTENSION OF ARABIC MATHEMATICS". In Arithmétique, Algèbre et Théorie des Nombres, 629–46. De Gruyter, 2023. http://dx.doi.org/10.1515/9783110784718-025.
Texto completo da fonte"Fibonacci et le nombre d’or". In Rencontres au pays des maths, 173–82. EDP Sciences, 2023. http://dx.doi.org/10.1051/978-2-7598-3137-1.c029.
Texto completo da fonte