Literatura científica selecionada sobre o tema "New broad-Spectrum antiviral"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "New broad-Spectrum antiviral".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "New broad-Spectrum antiviral"
Geraghty, Robert, Matthew Aliota e Laurent Bonnac. "Broad-Spectrum Antiviral Strategies and Nucleoside Analogues". Viruses 13, n.º 4 (13 de abril de 2021): 667. http://dx.doi.org/10.3390/v13040667.
Texto completo da fonteTian, Wen-Jun, e Xiao-Jia Wang. "Broad-Spectrum Antivirals Derived from Natural Products". Viruses 15, n.º 5 (30 de abril de 2023): 1100. http://dx.doi.org/10.3390/v15051100.
Texto completo da fonteKrzyzowska, Malgorzata, Martyna Janicka, Emilia Tomaszewska, Katarzyna Ranoszek-Soliwoda, Grzegorz Celichowski, Jarosław Grobelny e Pawel Szymanski. "Lactoferrin-Conjugated Nanoparticles as New Antivirals". Pharmaceutics 14, n.º 9 (3 de setembro de 2022): 1862. http://dx.doi.org/10.3390/pharmaceutics14091862.
Texto completo da fonteGhanbari, Reza, Ali Teimoori, Anahita Sadeghi, Ashraf Mohamadkhani, Sama Rezasoltani, Ebrahim Asadi, Abolghasem Jouyban e Susan CJ Sumner. "Existing antiviral options against SARS-CoV-2 replication in COVID-19 patients". Future Microbiology 15, n.º 18 (dezembro de 2020): 1747–58. http://dx.doi.org/10.2217/fmb-2020-0120.
Texto completo da fonteGao, Chengfeng, Chunxia Wen, Zhifeng Li, Shuhan Lin, Shu Gao, Haida Ding, Peng Zou, Zheng Xing e Yufeng Yu. "Fludarabine Inhibits Infection of Zika Virus, SFTS Phlebovirus, and Enterovirus A71". Viruses 13, n.º 5 (27 de abril de 2021): 774. http://dx.doi.org/10.3390/v13050774.
Texto completo da fonteVicente, Josefina, Martina Benedetti, Paula Martelliti, Luciana Vázquez, María Virginia Gentilini, Freddy Armando Peñaranda Figueredo, Mercedes Soledad Nabaes Jodar, Mariana Viegas, Andrea Alejandra Barquero e Carlos Alberto Bueno. "The Flavonoid Cyanidin Shows Immunomodulatory and Broad-Spectrum Antiviral Properties, Including SARS-CoV-2". Viruses 15, n.º 4 (18 de abril de 2023): 989. http://dx.doi.org/10.3390/v15040989.
Texto completo da fonteTampere, Marianna, Aleksandra Pettke, Cristiano Salata, Olov Wallner, Tobias Koolmeister, Armando Cazares-Körner, Torkild Visnes et al. "Novel Broad-Spectrum Antiviral Inhibitors Targeting Host Factors Essential for Replication of Pathogenic RNA Viruses". Viruses 12, n.º 12 (10 de dezembro de 2020): 1423. http://dx.doi.org/10.3390/v12121423.
Texto completo da fonteLee, Choongho. "Carrageenans as Broad-Spectrum Microbicides: Current Status and Challenges". Marine Drugs 18, n.º 9 (21 de agosto de 2020): 435. http://dx.doi.org/10.3390/md18090435.
Texto completo da fontede Wispelaere, Mélissanne, Margot Carocci, Dominique J. Burri, William J. Neidermyer, Calla M. Olson, Imme Roggenbach, Yanke Liang et al. "A broad-spectrum antiviral molecule, QL47, selectively inhibits eukaryotic translation". Journal of Biological Chemistry 295, n.º 6 (30 de dezembro de 2019): 1694–703. http://dx.doi.org/10.1074/jbc.ra119.011132.
Texto completo da fonteJones, Jeremy C., Bindumadhav M. Marathe, Christian Lerner, Lukas Kreis, Rodolfo Gasser, Philippe Noriel Q. Pascua, Isabel Najera e Elena A. Govorkova. "A Novel Endonuclease Inhibitor Exhibits Broad-Spectrum Anti-Influenza Virus ActivityIn Vitro". Antimicrobial Agents and Chemotherapy 60, n.º 9 (5 de julho de 2016): 5504–14. http://dx.doi.org/10.1128/aac.00888-16.
Texto completo da fonteTeses / dissertações sobre o assunto "New broad-Spectrum antiviral"
LUCIA, FALSITTA. "DDX3, a new frontier in broad-spectrum antiviral therapy: synthesis of potential inhibitors". Doctoral thesis, Università di Siena, 2020. http://hdl.handle.net/11365/1095615.
Texto completo da fonteMathieu, Thomas. "Etude de deux ANPs Antiviraux : caractéristiques physico-chimiques du LAVR-289 et formulations innovantes du Ténofovir". Electronic Thesis or Diss., Orléans, 2024. http://www.theses.fr/2024ORLE1021.
Texto completo da fonteThis thesis is part of one of the stages in the preclinical development of a drug candidate, which consists in determining various physico-chemical characteristics of the compound and exploring its formulation. The molecule in preclinical phase is LAVR-289, a novel broad-spectrum antiviral belonging to the acyclonucleoside phosphonate family, developed in prodrug form.We began by determining various parameters of LAVR-289 such as pKa, Log P and critical aggregation concentration by UV-visible spectrophotometry, reversed phase liquid chromatography and spectrofluorimetry, respectively. We also developed a HPLC-UV analytical method to determine the purity of LAVR-289 synthesis batches. This analytical method was used to determine the chemical stability of this molecule with respect to solvents and pH, as well as its plasma enzymatic stability. LC-HR-MS analyses were used to obtain the structure of degradation products and some metabolites. In the second part, we have synthesised new polymeric nanocarriers based on molecular imprinting technology for the controlled release of phosphonate acyclonucleosides. This exploratory study was carried out on Tenofovir, an antiviral used in the treatment of HIV and HBV infections. These nanomaterials were developed by precipitation polymerisation or by creating core-shell systems after surface derivatisation of biodegradable and biocompatible nanoparticles synthesised in the laboratory. These polymers were created from monomers derived from the functionalisation of pyrimidine bases. These materials showed slower temperature-dependent release kinetics of Tenofovir than the no imprinted form
Livros sobre o assunto "New broad-Spectrum antiviral"
Martinez, Tyler. Encephalitis. Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780199976805.003.0007.
Texto completo da fonteCapítulos de livros sobre o assunto "New broad-Spectrum antiviral"
Elazar, Menashe, e Jeffrey S. Glenn. "Confronting New and Old Antiviral Threats: Broad Spectrum Potential of Prenylation Inhibitors". In Antiviral Drug Discovery for Emerging Diseases and Bioterrorism Threats, 249–61. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2005. http://dx.doi.org/10.1002/0471716715.ch11.
Texto completo da fonteJoy, Christy, e Marria C. Cyriac. "Phytochemicals as Potential Drug Candidates for SARS Cov-2: An RDRp Based In-Silico Drug Designing". In Proceedings of the Conference BioSangam 2022: Emerging Trends in Biotechnology (BIOSANGAM 2022), 58–69. Dordrecht: Atlantis Press International BV, 2022. http://dx.doi.org/10.2991/978-94-6463-020-6_7.
Texto completo da fonteAshfaq, Ghina, Junaid Ali, Saira Arif, Memoon Sajid, Gul Hassan e Ahmed Shuja Syed. "Graphene and its Derivatives: A Potential Solution for Microbial Control". In 2D Materials: Chemistry and Applications (Part 1), 128–58. BENTHAM SCIENCE PUBLISHERS, 2024. http://dx.doi.org/10.2174/9789815223675124010007.
Texto completo da fonteK. Singh, Ashok, Aakansha Singh e Ankit Kumar Dubey. "Repurposed Therapeutic Strategies towards COVID-19 Potential Targets Based on Genomics and Protein Structure Remodeling". In Biotechnology to Combat COVID-19 [Working Title]. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.96728.
Texto completo da fonteSuresh, J. Immanuel, e M. S. Sri Janani. "Seaweed". In Exploring Complementary and Alternative Medicinal Products in Disease Therapy, 211–24. IGI Global, 2023. http://dx.doi.org/10.4018/978-1-7998-4120-3.ch009.
Texto completo da fonteKolayli, Sevgi. "A Miracle Food Supplement Obtained from Beehives: Propolis". In Herbs and Spices - New Perspectives in Human Health and Food Industry [Working Title]. IntechOpen, 2024. http://dx.doi.org/10.5772/intechopen.1004254.
Texto completo da fonteKumar Sachan, Rohan Samir, Ritu Bala, Abdel Rahman M. Al-Tawaha, Samia Khanum e Arun Karnwal. "Antimicrobial Drugs Obtained from Marine Algae". In Frontiers in Antimicrobial Agents, 213–47. BENTHAM SCIENCE PUBLISHERS, 2023. http://dx.doi.org/10.2174/9789815080056123020011.
Texto completo da fonteUpadhyay, Sonal, Ravi Bhushan, Pawan Kumar Dubey, Bashir A Sheikh, Mithun Rudrapal e James H. Zothantluanga. "Aromatic Plants, Essential oils, Carminatives, Tea Plants and Expectorant Herbs for the Management of COVID-19". In Medicinal Plants, Phytomedicines and Traditional Herbal Remedies for Drug Discovery and Development against COVID-19, 219–32. BENTHAM SCIENCE PUBLISHERS, 2023. http://dx.doi.org/10.2174/9789815049510123010011.
Texto completo da fonteRelatórios de organizações sobre o assunto "New broad-Spectrum antiviral"
Wang, X. F., e M. Schuldiner. Systems biology approaches to dissect virus-host interactions to develop crops with broad-spectrum virus resistance. Israel: United States-Israel Binational Agricultural Research and Development Fund, 2020. http://dx.doi.org/10.32747/2020.8134163.bard.
Texto completo da fonteGal-On, Amit, Shou-Wei Ding, Victor P. Gaba e Harry S. Paris. role of RNA-dependent RNA polymerase 1 in plant virus defense. United States Department of Agriculture, janeiro de 2012. http://dx.doi.org/10.32747/2012.7597919.bard.
Texto completo da fonte