Literatura científica selecionada sobre o tema "Neurons"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Neurons".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Neurons"
Holmstrom, Lars, Patrick D. Roberts e Christine V. Portfors. "Responses to Social Vocalizations in the Inferior Colliculus of the Mustached Bat Are Influenced by Secondary Tuning Curves". Journal of Neurophysiology 98, n.º 6 (dezembro de 2007): 3461–72. http://dx.doi.org/10.1152/jn.00638.2007.
Texto completo da fonteKirch, Christoph, e Leonardo L. Gollo. "Spatially resolved dendritic integration: towards a functional classification of neurons". PeerJ 8 (24 de novembro de 2020): e10250. http://dx.doi.org/10.7717/peerj.10250.
Texto completo da fontePesavento, Michael J., Cynthia D. Rittenhouse e David J. Pinto. "Response Sensitivity of Barrel Neuron Subpopulations to Simulated Thalamic Input". Journal of Neurophysiology 103, n.º 6 (junho de 2010): 3001–16. http://dx.doi.org/10.1152/jn.01053.2009.
Texto completo da fonteCardi, P., e F. Nagy. "A rhythmic modulatory gating system in the stomatogastric nervous system of Homarus gammarus. III. Rhythmic control of the pyloric CPG". Journal of Neurophysiology 71, n.º 6 (1 de junho de 1994): 2503–16. http://dx.doi.org/10.1152/jn.1994.71.6.2503.
Texto completo da fonteStiefel, Klaus M., e G. Bard Ermentrout. "Neurons as oscillators". Journal of Neurophysiology 116, n.º 6 (1 de dezembro de 2016): 2950–60. http://dx.doi.org/10.1152/jn.00525.2015.
Texto completo da fonteRuff, Douglas A., e Richard T. Born. "Feature attention for binocular disparity in primate area MT depends on tuning strength". Journal of Neurophysiology 113, n.º 5 (1 de março de 2015): 1545–55. http://dx.doi.org/10.1152/jn.00772.2014.
Texto completo da fonteJOHNSTON, DAVID, SIMON PETER MEKHAIL, MARY ANN GO e VINCENT R. DARIA. "MODELING NEURONAL RESPONSE TO SIMULTANEOUS AND SEQUENTIAL MULTI-SITE SYNAPTIC STIMULATION". International Journal of Modern Physics: Conference Series 17 (janeiro de 2012): 1–8. http://dx.doi.org/10.1142/s2010194512007878.
Texto completo da fonteBaker, Curtis L. "Spatial- and temporal-frequency selectivity as a basis for velocity preference in cat striate cortex neurons". Visual Neuroscience 4, n.º 02 (fevereiro de 1990): 101–13. http://dx.doi.org/10.1017/s0952523800002273.
Texto completo da fonteWright, Nathaniel C., Mahmood S. Hoseini, Tansel Baran Yasar e Ralf Wessel. "Coupling of synaptic inputs to local cortical activity differs among neurons and adapts after stimulus onset". Journal of Neurophysiology 118, n.º 6 (1 de dezembro de 2017): 3345–59. http://dx.doi.org/10.1152/jn.00398.2017.
Texto completo da fonteHong, En, Fatma Gurel Kazanci e Astrid A. Prinz. "Different Roles of Related Currents in Fast and Slow Spiking of Model Neurons From Two Phyla". Journal of Neurophysiology 100, n.º 4 (outubro de 2008): 2048–61. http://dx.doi.org/10.1152/jn.90567.2008.
Texto completo da fonteTeses / dissertações sobre o assunto "Neurons"
Moonens, Sofie. "Mirror Neurons : The human mirror neuron system". Thesis, Högskolan i Skövde, Institutionen för kommunikation och information, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:his:diva-6103.
Texto completo da fonteMoubarak, Estelle. "Constraints imposed by morphological and biophysical properties of axon and dendrites on the electrical behaviour of rat substantia nigra pars compacta dopaminergic neurons". Thesis, Aix-Marseille, 2018. http://www.theses.fr/2018AIXM0746.
Texto completo da fonteNeuronal output is defined by the complex interplay between the biophysical and morphological properties of neurons. Dopaminergic (DA) neurons of the substantia nigra pars compacta (SNc) are spontaneously active and generate a regular pacemaking activity. While most mammalian neurons have an axon emerging from the soma, the axon of DA neurons often arises from a dendrite at highly variable distances from the soma. Despite this large cell-to-cell variation in axon location, few studies have tried to unravel the potential link between neuronal morphology and electrical behaviour in this cell type. In a first article, we explored the high degree of cell-to-cell variability found in DA neurons by characterising several morphological and biophysical parameters. While AIS geometry did not seem to significantly affect action potential shape or pacemaking activity, we found that the electrical behaviour of DA neurons was particularly sensitive to somatodendritic morphology and conductances. In a second study, we characterised the morphological development of DA neurons during the first three post-natal weeks. We observed an asymmetric development of the dendritic tree, favouring the elongation and complexity of the axon-bearing dendrite. This asymmetry is associated with different contributions of the axon-bearing and non-axon bearing dendrites to action potential shape. Overall, the two studies suggest that DA neurons of the SNc are highly robust to cell-to-cell variations in axonal morphology. The peculiar morphological and biophysical profile of the dendritic arborization attenuates the role of the AIS in shaping electrical behaviour in this neuronal type
Steinbush, H. W. M. "Het neuron als bruggenbouwer "bridging disciplines by neurons" /". Maastricht : Maastricht : Instituut hersenen en gedrag ; University Library, Universiteit Maastricht [host], 1999. http://arno.unimaas.nl/show.cgi?fid=12984.
Texto completo da fonteSerrat, Reñé Román. "Papel de Alex3 en la vía de señalización de Wnt y en la dinámica mitocondrial". Doctoral thesis, Universitat de Barcelona, 2012. http://hdl.handle.net/10803/83338.
Texto completo da fonteAlex3 protein belongs to the eutherian specific family of genes Armcx, characterized by a high expression on the CNS, to be localized in a cluster on the X chromosome and to be originated by retrotransposition of Armc10 gene in a fast duplication in tandem. The Armcx/Armc10 proteins have a primary bimodal localization, both in nucleus and mitochondria as indicate their putative domains. Overexpression of Armcx/Armc10 proteins causes a profound alteration on the mitochondrial net showing that this family of proteins plays an important role in the regulation of the mitochondrial dynamics and at least, the overexpression of Alex3 protein neither change the bioenergetic parameters of mitochondria such as respiration, mitochondrial DNA content or calcium uptake nor alters the mitochondrial fusion/fission rate. Both the overexpression and knock-down of Alex3 and Armc10 proteins in hippocampal neurons alters the mitochondrial distribution and transport. Alex3 and Armc10 interact with the Kinesin/Miro/Trak2 mitochondrial transport regulator complex, suggesting that the Armcx protein family regulates mitochondrial dynamics through this complex. Moreover the interaction of Alex3 with this complex is dependent of calcium levels, diminishing the interaction when calcium levels are high. On the other hand, the Wnt signalling pathway induces the degradation of Alex3 protein in a proteosome independent process. This degradation is independent of the Wnt canonical and non-canonical members Dishevelled, GSK3β, β-catenin, JNK, calcineurin and CAMKII, but showing that the PKC and CKII members play a principal role in the control and degradation of Alex3 protein levels dependently and independently of Wnt pathways. Moreover, Alex3 degradation through Wnt signalling pathways, reverts the mitochondrial aggregation phenotypes and is avoided by PKC activation, suggesting that Wnt proteins can play a role in the control of mitochondrial dynamics through the regulation of Armcx proteins.
Wilson, Jennifer M. M. "Mechanisms of neuronal integration in adrenomedullary sympathetic preganglionic neurons". Thesis, University of Ottawa (Canada), 2002. http://hdl.handle.net/10393/6334.
Texto completo da fonteGanguly, Karunesh. "Activity-dependent regulation of neuronal excitability in hippocampal neurons /". Diss., Connect to a 24 p. preview or request complete full text in PDF format. Access restricted to UC campuses, 2002. http://wwwlib.umi.com/cr/ucsd/fullcit?p3059903.
Texto completo da fonteAvó, Freixo Francisco Duque Projecto. "Novel roles for the mitotic kinase Nek7 in hippocampal neurons". Doctoral thesis, Universitat de Barcelona, 2016. http://hdl.handle.net/10803/399540.
Texto completo da fonteLos microtúbulos son una componente importante del citoesqueleto, esenciales en la división celular, migración, transporte intracelular y diferenciación. La polaridad, estabilidad y dinámica de los microtúbulos son reguladas por muchos factores, como MAPs (proteínas asociadas a microtúbulos), quinesinas, dineínas, quinasas, fosfatasas, entre otros. Muchos de estos reguladores fueron descubiertos y caracterizados por su función durante la mitosis, pero algunos también están presentes en células diferenciadas, como por ejemplo neuronas. Las neuronas dependen mucho de la organización de los microtúbulos para su función. En una neurona, el axón tiene microtúbulos de polaridad uniforme, mientras que en las dendritas la polaridad es mixta, y esto es esencial para la transmisión unidireccional de la señal nerviosa. El sistema de diferenciación de neuronas hipocampales in vitro se utiliza para estudiar la morfología neuronal y funciones del citoesqueleto. En mi trabajo de tesis doctoral, he caracterizado la función de una quinasa mitótica, Nek7, como reguladora de la diferenciación de neuronas hipocampales. He observado que Nek7, junto con Nek6, regula el crecimiento axonal en neuronas inmaduras (5/6DIV). En ausencia de Nek7 o Nek6 los axones son más largos, mientras que la depleción de Nek9, otra quinasa que funciona en conjunto con Nek6/7 en mitosis, genera axones más cortos. En neuronas maduras (14DIV), Nek7 controla la morfología de dendritas y espinas a través de la regulación de la quinesina Eg5, que también es su substrato en mitosis. Los defectos generados por la depleción de Nek7 se rescatan con un mutante fosfo-mimético de Eg5 (S1033D) pero no con un mutante no fosforilable (S1033A). Además, Nek7 controla el reclutamiento y acumulación de Eg5 en la parte distal de las dendritas, a través de esta fosforilación. En la base de estos fenotipos encontramos problemas en la estabilidad y polaridad de microtúbulos en las dendritas. Tanto la depleción de Nek7 como la inactivación de Eg5 aumentan el porcentaje de microtúbulos de polaridad reversa en la parte distal de la dendrita, y disminuyen la acetilación de microtúbulos, un indicador de estabilidad. Finalmente se presenta un modelo en lo cual Eg5 regula la estabilidad, polaridad y deslizamiento de los microtúbulos dendríticos para favorecer el crecimiento dendrítico.
Stanke, Jennifer J. "Beyond Neuronal Replacement: Embryonic Retinal Cells Protect Mature Retinal Neurons". The Ohio State University, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=osu1250820277.
Texto completo da fonteBonifazi, Paolo. "Information processing in dissociated neuronal cultures of rat hippocampal neurons". Doctoral thesis, SISSA, 2005. http://hdl.handle.net/20.500.11767/4080.
Texto completo da fonteAlbrecht, David. "Efectos de la proteína SPARC sobre la maduración de las sinapsis autápticas colinérgicas". Doctoral thesis, Universitat de Barcelona, 2012. http://hdl.handle.net/10803/107673.
Texto completo da fonteThe synapses are a key element for the Nervous system functions. They are established mainly during the nervous system development, but they can be formed in the adult nervous system as well. Neurons and glial cells are intimately coupled during all these processes. During the last decade it has been described that glial cells participate in the synapses establishment and information processing, they do so secreting factors. To study the neuron-glía interaction, our laboratory has set up neuronal microcultures, where a single neuron grows in a drop of collagen, a permissive substracte, surrounded by agarose, a non permissive substrate, forcing the neuron to develop inside the collagen drop, forcing it to have contact only with itself. These kind of synapses are called autapses. During this PhD thesis, we found that immature glial cells secrete SPARC in vitro and in vivo. We proved that SPARC has an effect over the neurotransmission and the presynaptic terminal maturations in cholinergic autapses; nanomolar concentration of SPARC applied during the neuronal development enhances the spontaneous neurotransmission and the short-term plasticity. We have also characterized that nanomolar concentration of SPARC decreases the total vesicular number and the docked vesicles number in presynaptic terminal. These experimental results obtained during the thesis lead us to propose that SPARC arrest the synapses in an immature stage.
Livros sobre o assunto "Neurons"
Gerstner, Wulfram. Spiking neuron models: Single neurons, populations, plasticity. Cambridge, U.K: Cambridge University Press, 2002.
Encontre o texto completo da fonteFillenz, Marianne. Noradrenergic neurons. Cambridge [England]: Cambridge University Press, 1990.
Encontre o texto completo da fonteTaylor, John Gerald. Coupled Oscillating Neurons. London: Springer London, 1992.
Encontre o texto completo da fonteColombo, Bruno, ed. The Musical Neurons. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-08132-3.
Texto completo da fonteTaylor, John Gerald, e C. L. T. Mannion, eds. Coupled Oscillating Neurons. London: Springer London, 1992. http://dx.doi.org/10.1007/978-1-4471-1965-4.
Texto completo da fonteSifr, Ken Al. Too many neurons. New York: Vantage Press, 1997.
Encontre o texto completo da fonte1931-, Taylor John Gerald, e Mannion C. L. T, eds. Coupled oscillating neurons. London: Springer-Verlag, 1992.
Encontre o texto completo da fonteArmstrong, William E., e Jeffrey G. Tasker, eds. Neurophysiology of Neuroendocrine Neurons. Chichester, UK: John Wiley & Sons, Ltd, 2014. http://dx.doi.org/10.1002/9781118606803.
Texto completo da fonteAugenbraun, Eliene. Acidified compartments in neurons. [New York]: [Columbia University], 1992.
Encontre o texto completo da fonteJ, Bean Andrew, ed. Protein trafficking in neurons. Amsterdam: Elsevier/Academic Press, 2007.
Encontre o texto completo da fonteCapítulos de livros sobre o assunto "Neurons"
Cheng, Xiaoyan, Sebastian Simmich, Finn Zahari, Tom Birkoben, Maximiliane Noll, Tobias Wolfer, Eckhard Hennig, Robert Rieger, Hermann Kohlstedt e Andreas Bahr. "Biologically Inspired and Energy-Efficient Neurons". In Springer Series on Bio- and Neurosystems, 357–84. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-36705-2_15.
Texto completo da fonteAkiyama, Haruhiko. "Neurons". In Neuroinflammatory Mechanisms in Alzheimer’s Disease Basic and Clinical Research, 225–36. Basel: Birkhäuser Basel, 2001. http://dx.doi.org/10.1007/978-3-0348-8350-4_12.
Texto completo da fonteAbe, Koji. "Neurons". In Cerebral Ischemia, 217–32. Totowa, NJ: Humana Press, 1999. http://dx.doi.org/10.1007/978-1-59259-479-5_8.
Texto completo da fonteLyle, Randall R. "Neurons". In Encyclopedia of Child Behavior and Development, 1012–13. Boston, MA: Springer US, 2011. http://dx.doi.org/10.1007/978-0-387-79061-9_1958.
Texto completo da fonteSabah, Nassir H. "Neurons". In Neuromuscular Fundamentals, 231–74. First edition. | Boca Raton : CRC Press, 2021.: CRC Press, 2020. http://dx.doi.org/10.1201/9781003024798-7.
Texto completo da fonteSaucedo, Leslie. "Neurons". In Getting to Know Your Cells, 37–42. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-30146-9_7.
Texto completo da fonteStetter, Martin. "Neurons and Neuronal Signal Propagation". In Exploration of Cortical Function, 5–22. Dordrecht: Springer Netherlands, 2002. http://dx.doi.org/10.1007/978-94-010-0430-5_2.
Texto completo da fonteStrisciuglio, Nicola, e Nicolai Petkov. "Brain-Inspired Algorithms for Processing of Visual Data". In Lecture Notes in Computer Science, 105–15. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-82427-3_8.
Texto completo da fonteDieudonné, Stéphane. "Golgi Neurons". In Essentials of Cerebellum and Cerebellar Disorders, 201–5. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-24551-5_24.
Texto completo da fontePietrajtis, Katarzyna, e Stéphane Dieudonné. "Golgi Neurons". In Handbook of the Cerebellum and Cerebellar Disorders, 829–52. Dordrecht: Springer Netherlands, 2013. http://dx.doi.org/10.1007/978-94-007-1333-8_34.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Neurons"
Cao, Guoxin, You Zhou, Jeong Soon Lee, Jung Yul Lim e Namas Chandra. "Mechanical Model of Neuronal Function Loss". In ASME 2010 International Mechanical Engineering Congress and Exposition. ASMEDC, 2010. http://dx.doi.org/10.1115/imece2010-39447.
Texto completo da fontePrevitera, Michelle L., Mason Hui, Malav Desai, Devendra Verma, Rene Schloss e Noshir A. Langrana. "Neuronal Precursor Cell Proliferation on Elastic Substrates". In ASME 2011 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2011. http://dx.doi.org/10.1115/sbc2011-53246.
Texto completo da fonteRohlev, Anton, Christian Radehaus, Jacques I. Pankove, R. F. Carson e G. Borglis. "Optoelectronic Neuron". In Optical Computing. Washington, D.C.: Optica Publishing Group, 1991. http://dx.doi.org/10.1364/optcomp.1991.me5.
Texto completo da fonteTaylor, V. J., e Thomas F. Krile. "Electrooptical implementation of the Huberman-Hogg neural model". In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1987. http://dx.doi.org/10.1364/oam.1987.fb3.
Texto completo da fonteBall, John M., Clarence C. Franklin, David J. Schulz e Satish S. Nair. "Co-Regulation of Calcium and Delayed Rectifier Currents Maintains Neuronal Output in a Model of a Crustacean Cardiac Motor Neuron". In ASME 2008 Dynamic Systems and Control Conference. ASMEDC, 2008. http://dx.doi.org/10.1115/dscc2008-2299.
Texto completo da fonteLee, Yun-Jhu, Mehmet Berkay On, Luis El Srouji, Li Zhang, Mahmoud Abdelghany e S. J. Ben Yoo. "Demonstration of Neural Heterogeneity with Programmable Brain-Inspired Optoelectronic Spiking Neurons". In Optical Fiber Communication Conference. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/ofc.2024.tu3f.4.
Texto completo da fonteHoward, R. V., W. K. Chai e H. S. Tzou. "Modal Voltages of Linear and Nonlinear Structures Using Distributed Artificial Neurons". In ASME 1999 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 1999. http://dx.doi.org/10.1115/imece1999-0547.
Texto completo da fonteLin, Steven, e Demetri Psaltis. "GaAs optoelectronic neurons". In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1991. http://dx.doi.org/10.1364/oam.1991.mk1.
Texto completo da fonteKrishnamoorthy, Ashok V., Gökçe Yayla, Gary C. Marsden e Sadik Esener. "Free-space optoelectronic neural system prototype". In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1992. http://dx.doi.org/10.1364/oam.1992.mqq2.
Texto completo da fontePitta, Marina Galdino da Rocha, Jordy Silva de Carvalho, Luzilene Pereira de Lima e Ivan da Rocha Pitta. "iPSC therapies applied to rehabilitation in parkinson’s disease". In XIII Congresso Paulista de Neurologia. Zeppelini Editorial e Comunicação, 2021. http://dx.doi.org/10.5327/1516-3180.022.
Texto completo da fonteRelatórios de organizações sobre o assunto "Neurons"
Orendurff, Dody. Consciousness, neurons, and laughing gas. Portland State University Library, janeiro de 2000. http://dx.doi.org/10.15760/etd.837.
Texto completo da fonteRothganger, Fredrick, James Aimone, Christina Warrender e Derek Trumbo. Neurons to algorithms LDRD final report. Office of Scientific and Technical Information (OSTI), setembro de 2013. http://dx.doi.org/10.2172/1096471.
Texto completo da fonteAlmassian, Amin. Information Representation and Computation of Spike Trains in Reservoir Computing Systems with Spiking Neurons and Analog Neurons. Portland State University Library, janeiro de 2000. http://dx.doi.org/10.15760/etd.2720.
Texto completo da fonteBrown, Thomas H. Self-Organization of Hebbian Synapses on Hippocampal Neurons. Fort Belvoir, VA: Defense Technical Information Center, setembro de 1995. http://dx.doi.org/10.21236/ada299559.
Texto completo da fonteBrown, Thomas H. Self-Organization of Hebbian Synapses on Hippocampal Neurons. Fort Belvoir, VA: Defense Technical Information Center, janeiro de 1996. http://dx.doi.org/10.21236/ada309810.
Texto completo da fonteCarvey, Paul M. Cytokine Induction of Dopamine Neurons from Progenitor Cells. Fort Belvoir, VA: Defense Technical Information Center, outubro de 2000. http://dx.doi.org/10.21236/ada391417.
Texto completo da fonteGothilf, Yoav, Yonathan Zohar, Susan Wray e Hanna Rosenfeld. Inducing sterility in farmed fish by disrupting the development of the GnRH System. United States Department of Agriculture, outubro de 2007. http://dx.doi.org/10.32747/2007.7696512.bard.
Texto completo da fonteOri, Naomi, e Sarah Hake. Similarities and differences in KNOX function. United States Department of Agriculture, março de 2008. http://dx.doi.org/10.32747/2008.7696516.bard.
Texto completo da fonteMorrow, Thomas J. Modulation of Thalamic Somatosensory Neurons by Arousal and Attention. Fort Belvoir, VA: Defense Technical Information Center, agosto de 1988. http://dx.doi.org/10.21236/ada200073.
Texto completo da fonteJohnson, Don H. Simulation of Excitatory/Inhibitory Interactions in Single Auditory Neurons. Fort Belvoir, VA: Defense Technical Information Center, setembro de 1992. http://dx.doi.org/10.21236/ada253614.
Texto completo da fonte