Artigos de revistas sobre o tema "Neuromorphic devices"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Neuromorphic devices".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Ielmini, Daniele, e Stefano Ambrogio. "Emerging neuromorphic devices". Nanotechnology 31, n.º 9 (9 de dezembro de 2019): 092001. http://dx.doi.org/10.1088/1361-6528/ab554b.
Texto completo da fonteGuo, Zhonghao. "Synaptic device-based neuromorphic computing in artificial intelligence". Applied and Computational Engineering 65, n.º 1 (23 de maio de 2024): 253–59. http://dx.doi.org/10.54254/2755-2721/65/20240511.
Texto completo da fontePark, Jisoo, Jihyun Shin e Hocheon Yoo. "Heterostructure-Based Optoelectronic Neuromorphic Devices". Electronics 13, n.º 6 (14 de março de 2024): 1076. http://dx.doi.org/10.3390/electronics13061076.
Texto completo da fonteHuang, Wen, Huixing Zhang, Zhengjian Lin, Pengjie Hang e Xing’ao Li. "Transistor-Based Synaptic Devices for Neuromorphic Computing". Crystals 14, n.º 1 (9 de janeiro de 2024): 69. http://dx.doi.org/10.3390/cryst14010069.
Texto completo da fonteLim, Jung Wook, Su Jae Heo, Min A. Park e Jieun Kim. "Synaptic Transistors Exhibiting Gate-Pulse-Driven, Metal-Semiconductor Transition of Conduction". Materials 14, n.º 24 (7 de dezembro de 2021): 7508. http://dx.doi.org/10.3390/ma14247508.
Texto completo da fonteDiao, Yu, Yaoxuan Zhang, Yanran Li e Jie Jiang. "Metal-Oxide Heterojunction: From Material Process to Neuromorphic Applications". Sensors 23, n.º 24 (12 de dezembro de 2023): 9779. http://dx.doi.org/10.3390/s23249779.
Texto completo da fonteFeng, Chenyin, Wenwei Wu, Huidi Liu, Junke Wang, Houzhao Wan, Guokun Ma e Hao Wang. "Emerging Opportunities for 2D Materials in Neuromorphic Computing". Nanomaterials 13, n.º 19 (7 de outubro de 2023): 2720. http://dx.doi.org/10.3390/nano13192720.
Texto completo da fonteKim, Dongshin, Ik-Jyae Kim e Jang-Sik Lee. "Memory Devices for Flexible and Neuromorphic Device Applications". Advanced Intelligent Systems 3, n.º 5 (25 de janeiro de 2021): 2000206. http://dx.doi.org/10.1002/aisy.202000206.
Texto completo da fonteHuang, Yi, Fatemeh Kiani, Fan Ye e Qiangfei Xia. "From memristive devices to neuromorphic systems". Applied Physics Letters 122, n.º 11 (13 de março de 2023): 110501. http://dx.doi.org/10.1063/5.0133044.
Texto completo da fonteMachado, Pau, Salvador Manich, Álvaro Gómez-Pau, Rosa Rodríguez-Montañés, Mireia Bargalló González, Francesca Campabadal e Daniel Arumí. "Programming Techniques of Resistive Random-Access Memory Devices for Neuromorphic Computing". Electronics 12, n.º 23 (27 de novembro de 2023): 4803. http://dx.doi.org/10.3390/electronics12234803.
Texto completo da fonteGumyusenge, Aristide, Armantas Melianas, Scott T. Keene e Alberto Salleo. "Materials Strategies for Organic Neuromorphic Devices". Annual Review of Materials Research 51, n.º 1 (26 de julho de 2021): 47–71. http://dx.doi.org/10.1146/annurev-matsci-080619-111402.
Texto completo da fonteMilo, Valerio, Gerardo Malavena, Christian Monzio Compagnoni e Daniele Ielmini. "Memristive and CMOS Devices for Neuromorphic Computing". Materials 13, n.º 1 (1 de janeiro de 2020): 166. http://dx.doi.org/10.3390/ma13010166.
Texto completo da fonteWu, Yuting, Xinxin Wang e Wei D. Lu. "Dynamic resistive switching devices for neuromorphic computing". Semiconductor Science and Technology 37, n.º 2 (29 de dezembro de 2021): 024003. http://dx.doi.org/10.1088/1361-6641/ac41e4.
Texto completo da fonteYou Zhou e Shriram Ramanathan. "Mott Memory and Neuromorphic Devices". Proceedings of the IEEE 103, n.º 8 (agosto de 2015): 1289–310. http://dx.doi.org/10.1109/jproc.2015.2431914.
Texto completo da fonteZhao, Qing-Tai, Fengben Xi, Yi Han, Andreas Grenmyr, Jin Hee Bae e Detlev Gruetzmacher. "Ferroelectric Devices for Neuromorphic Computing". ECS Meeting Abstracts MA2022-02, n.º 32 (9 de outubro de 2022): 1183. http://dx.doi.org/10.1149/ma2022-02321183mtgabs.
Texto completo da fonteYan, Yujie, Xiaomin Wu, Qizhen Chen, Xiumei Wang, Enlong Li, Yuan Liu, Huipeng Chen e Tailiang Guo. "An intrinsically healing artificial neuromorphic device". Journal of Materials Chemistry C 8, n.º 20 (2020): 6869–76. http://dx.doi.org/10.1039/d0tc00726a.
Texto completo da fonteJué, Emilie, Matthew R. Pufall, Ian W. Haygood, William H. Rippard e Michael L. Schneider. "Perspectives on nanoclustered magnetic Josephson junctions as artificial synapses". Applied Physics Letters 121, n.º 24 (12 de dezembro de 2022): 240501. http://dx.doi.org/10.1063/5.0118287.
Texto completo da fonteLin, Xinhuang, Haotian Long, Shuo Ke, Yuyuan Wang, Ying Zhu, Chunsheng Chen, Changjin Wan e Qing Wan. "Indium-Gallium-Zinc-Oxide-Based Photoelectric Neuromorphic Transistors for Spiking Morse Coding". Chinese Physics Letters 39, n.º 6 (1 de junho de 2022): 068501. http://dx.doi.org/10.1088/0256-307x/39/6/068501.
Texto completo da fonteLee, Jae-Eun, Chuljun Lee, Dong-Wook Kim, Daeseok Lee e Young-Ho Seo. "An On-Chip Learning Method for Neuromorphic Systems Based on Non-Ideal Synapse Devices". Electronics 9, n.º 11 (18 de novembro de 2020): 1946. http://dx.doi.org/10.3390/electronics9111946.
Texto completo da fonteChen, Chao, Tao Lin, Jianteng Niu, Yiming Sun, Liu Yang, Wang Kang e Na Lei. "Surface acoustic wave controlled skyrmion-based synapse devices". Nanotechnology 33, n.º 11 (23 de dezembro de 2021): 115205. http://dx.doi.org/10.1088/1361-6528/ac3f14.
Texto completo da fonteGonzález Sopeña, Juan Manuel, Vikram Pakrashi e Bidisha Ghosh. "A Spiking Neural Network Based Wind Power Forecasting Model for Neuromorphic Devices". Energies 15, n.º 19 (2 de outubro de 2022): 7256. http://dx.doi.org/10.3390/en15197256.
Texto completo da fontePark, Jaeyoung. "Neuromorphic Computing Using Emerging Synaptic Devices: A Retrospective Summary and an Outlook". Electronics 9, n.º 9 (1 de setembro de 2020): 1414. http://dx.doi.org/10.3390/electronics9091414.
Texto completo da fonteChen, An, Stefano Ambrogio, Pritish Narayanan, Atsuya Okazaki, Hsinyu Tsai, Kohji Hosokawa, Charles Mackin et al. "(Invited) Emerging Nonvolatile Memories for Analog Neuromorphic Computing". ECS Meeting Abstracts MA2024-01, n.º 21 (9 de agosto de 2024): 1293. http://dx.doi.org/10.1149/ma2024-01211293mtgabs.
Texto completo da fonteAlialy, Sahar, Koorosh Esteki, Mauro S. Ferreira, John J. Boland e Claudia Gomes da Rocha. "Nonlinear ion drift-diffusion memristance description of TiO2 RRAM devices". Nanoscale Advances 2, n.º 6 (2020): 2514–24. http://dx.doi.org/10.1039/d0na00195c.
Texto completo da fonteLi, Bo, e Guoyong Shi. "A Native SPICE Implementation of Memristor Models for Simulation of Neuromorphic Analog Signal Processing Circuits". ACM Transactions on Design Automation of Electronic Systems 27, n.º 1 (31 de janeiro de 2022): 1–24. http://dx.doi.org/10.1145/3474364.
Texto completo da fonteLi, Tongxuan. "Neuromorphic Devices Based on Two-Dimensional Materials and Their Applications". Highlights in Science, Engineering and Technology 87 (26 de março de 2024): 186–91. http://dx.doi.org/10.54097/kxsmsn90.
Texto completo da fonteHo, Tsz-Lung, Keda Ding, Nikolay Lyapunov, Chun-Hung Suen, Lok-Wing Wong, Jiong Zhao, Ming Yang, Xiaoyuan Zhou e Ji-Yan Dai. "Multi-Level Resistive Switching in SnSe/SrTiO3 Heterostructure Based Memristor Device". Nanomaterials 12, n.º 13 (21 de junho de 2022): 2128. http://dx.doi.org/10.3390/nano12132128.
Texto completo da fonteYOON, Tae-Sik. "Artificial Synaptic Devices for Neuromorphic Systems". Physics and High Technology 28, n.º 4 (30 de abril de 2019): 3–8. http://dx.doi.org/10.3938/phit.28.011.
Texto completo da fonteLiu, Yi-Chun, Ya Lin, Zhong-Qiang Wang e Hai-Yang Xu. "Oxide-based memristive neuromorphic synaptic devices". Acta Physica Sinica 68, n.º 16 (2019): 168504. http://dx.doi.org/10.7498/aps.68.20191262.
Texto completo da fonteGuo, Yan-Bo, e Li-Qiang Zhu. "Recent progress in optoelectronic neuromorphic devices". Chinese Physics B 29, n.º 7 (agosto de 2020): 078502. http://dx.doi.org/10.1088/1674-1056/ab99b6.
Texto completo da fonteChang, Ting, Yuchao Yang e Wei Lu. "Building Neuromorphic Circuits with Memristive Devices". IEEE Circuits and Systems Magazine 13, n.º 2 (2013): 56–73. http://dx.doi.org/10.1109/mcas.2013.2256260.
Texto completo da fonteLiu, Chang, Ru Huang, Yanghao Wang e Yuchao Yang. "Progresses and outlook in neuromorphic devices". Chinese Science Bulletin 65, n.º 10 (26 de dezembro de 2019): 904–15. http://dx.doi.org/10.1360/tb-2019-0739.
Texto completo da fonteSun, Jia, Ying Fu e Qing Wan. "Organic synaptic devices for neuromorphic systems". Journal of Physics D: Applied Physics 51, n.º 31 (10 de julho de 2018): 314004. http://dx.doi.org/10.1088/1361-6463/aacd99.
Texto completo da fonteZhu, Yixin, Huiwu Mao, Ying Zhu, Xiangjing Wang, Chuanyu Fu, Shuo Ke, Changjin Wan e Qing Wan. "CMOS-Compatible Neuromorphic Devices for Neuromorphic Perception and Computing: A Review". International Journal of Extreme Manufacturing, 11 de agosto de 2023. http://dx.doi.org/10.1088/2631-7990/acef79.
Texto completo da fonteHuang, Zhuohui, Yanran Li, Yi Zhang, Jiewei Chen, Jun He e Jie Jiang. "2D Multifunctional Devices: from Material Preparation to Device Fabrication and Neuromorphic Applications". International Journal of Extreme Manufacturing, 28 de fevereiro de 2024. http://dx.doi.org/10.1088/2631-7990/ad2e13.
Texto completo da fonteShen Liu-feng, Hu Ling-xiang, Kang Feng-wen, Ye Yu-min e Zhuge Fei. "Optoelectronic neuromorphic devices and their applications". Acta Physica Sinica, 2022, 0. http://dx.doi.org/10.7498/aps.71.20220111.
Texto completo da fonteLong, Yan, Xiang Chen, Xiaoxin Pan, Jinxia Duan, Xiaoqing Li, Yongcheng Wu, Jie Tang et al. "Memristor Constructed by CsPbIBr2 inorganic halide perovskite for Artificial Synapse and Logic Operation". physica status solidi (RRL) – Rapid Research Letters, 31 de outubro de 2023. http://dx.doi.org/10.1002/pssr.202300342.
Texto completo da fonteZhong, Hai, Kuijuan Jin e Chen Ge. "Hafnia-based neuromorphic devices". Applied Physics Letters 125, n.º 15 (7 de outubro de 2024). http://dx.doi.org/10.1063/5.0226206.
Texto completo da fonteShim, Hyunseok, Seonmin Jang, Anish Thukral, Seongsik Jeong, Hyeseon Jo, Bin Kan, Shubham Patel et al. "Artificial neuromorphic cognitive skins based on distributed biaxially stretchable elastomeric synaptic transistors". Proceedings of the National Academy of Sciences 119, n.º 23 (junho de 2022). http://dx.doi.org/10.1073/pnas.2204852119.
Texto completo da fonteZhang, Zirui, Dongliang Yang, Huihan Li, Ce Li, Zhongrui Wang, Linfeng Sun e Heejun Yang. "2D materials and van der Waals heterojunctions for neuromorphic computing". Neuromorphic Computing and Engineering, 17 de agosto de 2022. http://dx.doi.org/10.1088/2634-4386/ac8a6a.
Texto completo da fonteHu, Lingxiang, Xia Zhuge, Jingrui Wang, Xianhua Wei, Li Zhang, Yang Chai, Xiaoyong Xue, Zhizhen Ye e Fei Zhuge. "Emerging Optoelectronic Devices for Brain‐Inspired Computing". Advanced Electronic Materials, 9 de setembro de 2024. http://dx.doi.org/10.1002/aelm.202400482.
Texto completo da fonteChen, H. J., C. C. Chiang, C. Y. Cheng, D. Qu e S. Y. Huang. "Neuromorphic computing devices based on the asymmetric temperature gradient". Applied Physics Letters 122, n.º 26 (26 de junho de 2023). http://dx.doi.org/10.1063/5.0155229.
Texto completo da fonteSun, Yilin, Huaipeng Wang e Dan Xie. "Recent Advance in Synaptic Plasticity Modulation Techniques for Neuromorphic Applications". Nano-Micro Letters 16, n.º 1 (6 de junho de 2024). http://dx.doi.org/10.1007/s40820-024-01445-x.
Texto completo da fonteGao, Changsong, Di Liu, Chenhui Xu, Junhua Bai, Enlong Li, Xianghong Zhang, Xiaoting Zhu et al. "Feedforward Photoadaptive Organic Neuromorphic Transistor with Mixed‐Weight Plasticity for Augmenting Perception". Advanced Functional Materials, 23 de janeiro de 2024. http://dx.doi.org/10.1002/adfm.202313217.
Texto completo da fonteGärisch, Fabian, Vincent Schröder, Emil J. W. List‐Kratochvil e Giovanni Ligorio. "Scalable Fabrication of Neuromorphic Devices Using Inkjet Printing for the Deposition of Organic Mixed Ionic‐Electronic Conductor". Advanced Electronic Materials, 3 de novembro de 2024. http://dx.doi.org/10.1002/aelm.202400479.
Texto completo da fonteJiang Zi-Han, Ke Shuo, Zhu Ying, Zhu Yi-Xin, Zhu Li, Wan Chang-Jin e Wan Qing. "Flexible neuromorphic transistors for bio-inspired perception application". Acta Physica Sinica, 2022, 0. http://dx.doi.org/10.7498/aps.71.20220308.
Texto completo da fonteLu, Guangming, e Ekhard K. H. Salje. "Multiferroic neuromorphic computation devices". APL Materials 12, n.º 6 (1 de junho de 2024). http://dx.doi.org/10.1063/5.0216849.
Texto completo da fontePati, Satya Prakash, e Takeaki Yajima. "Review of solid-state proton devices for neuromorphic information processing". Japanese Journal of Applied Physics, 14 de fevereiro de 2024. http://dx.doi.org/10.35848/1347-4065/ad297b.
Texto completo da fonteJu, Dongyeol, Jungwoo Lee e Sungjun Kim. "Nociceptor‐Enhanced Spike‐Timing‐Dependent Plasticity in Memristor with Coexistence of Filamentary and Non‐Filamentary Switching". Advanced Materials Technologies, 19 de maio de 2024. http://dx.doi.org/10.1002/admt.202400440.
Texto completo da fonteLin, Xiangde, Zhenyu Feng, Yao Xiong, Wenwen Sun, Wanchen Yao, Yichen Wei, Zhong Lin Wang e Qijun Sun. "Piezotronic Neuromorphic Devices: Principle, Manufacture, and Applications". International Journal of Extreme Manufacturing, 13 de março de 2024. http://dx.doi.org/10.1088/2631-7990/ad339b.
Texto completo da fonte