Artigos de revistas sobre o tema "Neuroendocrine transdifferentiation"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Neuroendocrine transdifferentiation".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Sergeant, Camille, Christel Jublanc, Delphine Leclercq, Anne-Laure Boch, Franck Bielle, Gerald Raverot, Adrian F. Daly, Jacqueline Trouillas e Chiara Villa. "Transdifferentiation of Neuroendocrine Cells". American Journal of Surgical Pathology 41, n.º 6 (junho de 2017): 849–53. http://dx.doi.org/10.1097/pas.0000000000000803.
Texto completo da fonteStone, Louise. "A novel mechanism of neuroendocrine transdifferentiation". Nature Reviews Urology 15, n.º 5 (20 de março de 2018): 263. http://dx.doi.org/10.1038/nrurol.2018.40.
Texto completo da fonteCordeiro-Rudnisky, Fernanda, Yue Sun e Rayan Saade. "Prostate Carcinoma With Overlapping Features of Small Cell and Acinar Adenocarcinoma: A Case Report". American Journal of Clinical Pathology 152, Supplement_1 (11 de setembro de 2019): S66—S67. http://dx.doi.org/10.1093/ajcp/aqz113.072.
Texto completo da fonteQuintanal-Villalonga, Alvaro, Hirokazu Taniguchi, Yingqian A. Zhan, Jacklynn V. Egger, Umesh Bhanot, Juan Qiu, Elisa de Stanchina et al. "AKT inhibition as a therapeutic strategy to constrain histological transdifferentiation in EGFR-mutant lung adenocarcinoma." Journal of Clinical Oncology 40, n.º 16_suppl (1 de junho de 2022): e21166-e21166. http://dx.doi.org/10.1200/jco.2022.40.16_suppl.e21166.
Texto completo da fonteYuan, Ta-Chun, Suresh Veeramani e Ming-Fong Lin. "Neuroendocrine-like prostate cancer cells: neuroendocrine transdifferentiation of prostate adenocarcinoma cells". Endocrine-Related Cancer 14, n.º 3 (setembro de 2007): 531–47. http://dx.doi.org/10.1677/erc-07-0061.
Texto completo da fonteVon Amsberg, Gunhild, Sergey Dyshlovoy, Jessica Hauschild, Verena Sailer, Sven Perner, Anne Offermann, Lina Merkens et al. "Long-term taxane exposure and transdifferentiation of prostate cancer in vitro." Journal of Clinical Oncology 41, n.º 6_suppl (20 de fevereiro de 2023): 254. http://dx.doi.org/10.1200/jco.2023.41.6_suppl.254.
Texto completo da fonteQuintanal-Villalonga, Alvaro, Hirokazu Taniguchi, Yingqian A. Zhan, Fathema Uddin, Viola Allaj, Parvathy Manoj, Nisargbhai S. Shah et al. "Abstract 658: AKT pathway as a therapeutic target to constrain lineage plasticity leading to histological transdifferentiation". Cancer Research 82, n.º 12_Supplement (15 de junho de 2022): 658. http://dx.doi.org/10.1158/1538-7445.am2022-658.
Texto completo da fonteFrigo, Daniel E., e Donald P. McDonnell. "Differential effects of prostate cancer therapeutics on neuroendocrine transdifferentiation". Molecular Cancer Therapeutics 7, n.º 3 (março de 2008): 659–69. http://dx.doi.org/10.1158/1535-7163.mct-07-0480.
Texto completo da fontePatel, Girijesh, Sayanika Dutta, Mosharaf Mahmud Syed, Sabarish Ramachandran, Monica Sharma, Venkatesh Rajamanickam, Vadivel Ganapathy et al. "TBX2 Drives Neuroendocrine Prostate Cancer through Exosome-Mediated Repression of miR-200c-3p". Cancers 13, n.º 19 (7 de outubro de 2021): 5020. http://dx.doi.org/10.3390/cancers13195020.
Texto completo da fonteTurner, Leo, Andrew Burbanks e Marianna Cerasuolo. "Mathematical insights into neuroendocrine transdifferentiation of human prostate cancer cells". Nonlinear Analysis: Modelling and Control 26, n.º 5 (1 de setembro de 2021): 884–913. http://dx.doi.org/10.15388/namc.2021.26.24441.
Texto completo da fonteCerasuolo, Marianna, Debora Paris, Fabio A. Iannotti, Dominique Melck, Roberta Verde, Enrico Mazzarella, Andrea Motta e Alessia Ligresti. "Neuroendocrine Transdifferentiation in Human Prostate Cancer Cells: An Integrated Approach". Cancer Research 75, n.º 15 (11 de junho de 2015): 2975–86. http://dx.doi.org/10.1158/0008-5472.can-14-3830.
Texto completo da fonteZhu, Shimiao, Hao Tian, Xiaodan Niu, Jiang Wang, Xing Li, Ning Jiang, Simeng Wen et al. "Neurotensin and its receptors mediate neuroendocrine transdifferentiation in prostate cancer". Oncogene 38, n.º 24 (15 de fevereiro de 2019): 4875–84. http://dx.doi.org/10.1038/s41388-019-0750-5.
Texto completo da fonteZamora, Irene, Michael R. Freeman, Ignacio J. Encío e Mirja Rotinen. "Targeting Key Players of Neuroendocrine Differentiation in Prostate Cancer". International Journal of Molecular Sciences 24, n.º 18 (5 de setembro de 2023): 13673. http://dx.doi.org/10.3390/ijms241813673.
Texto completo da fonteZhu, Shimiao, Hao Tian, Xiaodan Niu, Jiang Wang, Xing Li, Ning Jiang, Simeng Wen et al. "Correction: Neurotensin and its receptors mediate neuroendocrine transdifferentiation in prostate cancer". Oncogene 38, n.º 24 (2 de maio de 2019): 4885. http://dx.doi.org/10.1038/s41388-019-0827-1.
Texto completo da fonteWright, Michael E., Ming-Jer Tsai e Ruedi Aebersold. "Androgen Receptor Represses the Neuroendocrine Transdifferentiation Process in Prostate Cancer Cells". Molecular Endocrinology 17, n.º 9 (setembro de 2003): 1726–37. http://dx.doi.org/10.1210/me.2003-0031.
Texto completo da fonteAzur, Romie Angelo G., Kevin Christian V. Olarte, Weand S. Ybañez, Alessandria Maeve M. Ocampo e Pia D. Bagamasbad. "CYB561 supports the neuroendocrine phenotype in castration-resistant prostate cancer". PLOS ONE 19, n.º 5 (13 de maio de 2024): e0300413. http://dx.doi.org/10.1371/journal.pone.0300413.
Texto completo da fonteSlabáková, Eva, Zuzana Kahounová, Jiřina Procházková e Karel Souček. "Regulation of Neuroendocrine-like Differentiation in Prostate Cancer by Non-Coding RNAs". Non-Coding RNA 7, n.º 4 (2 de dezembro de 2021): 75. http://dx.doi.org/10.3390/ncrna7040075.
Texto completo da fonteGopal, Priyanka, e Mohamed Abazeed. "Abstract 5830: A first-of-its-kind model that reconstitutes targeted drug-induced cellular transdifferentiation". Cancer Research 84, n.º 6_Supplement (22 de março de 2024): 5830. http://dx.doi.org/10.1158/1538-7445.am2024-5830.
Texto completo da fonteMarzioni, Marco, Stefania Saccomanno, Cinzia Candelaresi, Chiara Rychlicki, Laura Agostinelli, Kumar Shanmukhappa, Luciano Trozzi, Irene Pierantonelli, Samuele De Minicis e Antonio Benedetti. "Pancreatic Duodenal Homeobox-1 de novo expression drives cholangiocyte neuroendocrine-like transdifferentiation". Journal of Hepatology 53, n.º 4 (outubro de 2010): 663–70. http://dx.doi.org/10.1016/j.jhep.2010.04.022.
Texto completo da fonteZelivianski, Stanislav, Michael Verni, Carissa Moore, Dmitriy Kondrikov, Rodney Taylor e Ming-Fong Lin. "Multipathways for transdifferentiation of human prostate cancer cells into neuroendocrine-like phenotype". Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 1539, n.º 1-2 (maio de 2001): 28–43. http://dx.doi.org/10.1016/s0167-4889(01)00087-8.
Texto completo da fonteLi, Yinan, Nilgun Donmez, Cenk Sahinalp, Ning Xie, Yuwei Wang, Hui Xue, Fan Mo et al. "SRRM4 Drives Neuroendocrine Transdifferentiation of Prostate Adenocarcinoma Under Androgen Receptor Pathway Inhibition". European Urology 71, n.º 1 (janeiro de 2017): 68–78. http://dx.doi.org/10.1016/j.eururo.2016.04.028.
Texto completo da fonteClermont, Pier-Luc, Xinpei Ci, Hardev Pandha, Yuzhuo Wang e Francesco Crea. "Treatment-emergent neuroendocrine prostate cancer: molecularly driven clinical guidelines". International Journal of Endocrine Oncology 6, n.º 2 (1 de setembro de 2019): IJE20. http://dx.doi.org/10.2217/ije-2019-0008.
Texto completo da fonteCi, Xinpei, Jun Hao, Xin Dong, Hui Xue, Rebecca Wu, Stephen Yiu Chuen Choi, Anne M. Haegert et al. "Conditionally Reprogrammed Cells from Patient-Derived Xenograft to Model Neuroendocrine Prostate Cancer Development". Cells 9, n.º 6 (4 de junho de 2020): 1398. http://dx.doi.org/10.3390/cells9061398.
Texto completo da fonteOstano, Paola, Maurizia Mello-Grand, Debora Sesia, Ilaria Gregnanin, Caterina Peraldo-Neia, Francesca Guana, Elena Jachetti, Antonella Farsetti e Giovanna Chiorino. "Gene Expression Signature Predictive of Neuroendocrine Transformation in Prostate Adenocarcinoma". International Journal of Molecular Sciences 21, n.º 3 (6 de fevereiro de 2020): 1078. http://dx.doi.org/10.3390/ijms21031078.
Texto completo da fonteFernandes, Rayzel C., John Toubia, Scott Townley, Adrienne R. Hanson, B. Kate Dredge, Katherine A. Pillman, Andrew G. Bert et al. "Post-transcriptional Gene Regulation by MicroRNA-194 Promotes Neuroendocrine Transdifferentiation in Prostate Cancer". Cell Reports 34, n.º 1 (janeiro de 2021): 108585. http://dx.doi.org/10.1016/j.celrep.2020.108585.
Texto completo da fonteYao, Erica, Chuwen Lin, Qingzhe Wu, Kuan Zhang, Hai Song e Pao-Tien Chuang. "Notch Signaling Controls Transdifferentiation of Pulmonary Neuroendocrine Cells in Response to Lung Injury". STEM CELLS 36, n.º 3 (1 de dezembro de 2017): 377–91. http://dx.doi.org/10.1002/stem.2744.
Texto completo da fontePisani, David, Daniel Micallef, Jeanesse Scerri, Alexandra Betts, James Degaetano e Shawn Baldacchino. "Neuroendocrine Transdifferentiation in Cutaneous Melanoma: A Case Report and Review of the Literature". American Journal of Dermatopathology 45, n.º 4 (17 de fevereiro de 2023): 264–68. http://dx.doi.org/10.1097/dad.0000000000002377.
Texto completo da fonteMoritz, Tom, Simone Venz, Heike Junker, Sarah Kreuz, Reinhard Walther e Uwe Zimmermann. "Isoform 1 of TPD52 (PC-1) promotes neuroendocrine transdifferentiation in prostate cancer cells". Tumor Biology 37, n.º 8 (5 de fevereiro de 2016): 10435–46. http://dx.doi.org/10.1007/s13277-016-4925-1.
Texto completo da fonteZhu, Shimiao, Zhiqun Shang, Hao Tian, Amilcar Flores-Morales e Yuanjie Niu. "AB007. Neurotensin derived from cancer stroma contributes to castration resistance via promoting neuroendocrine transdifferentiation". Translational Andrology and Urology 5, S1 (abril de 2016): AB007. http://dx.doi.org/10.21037/tau.2016.s007.
Texto completo da fonteMendieta, Irasema, Maricela Rodríguez-Nieto, Rosa Elvira Nuñez-Anita, Jorge Luis Menchaca-Arredondo, Guadalupe García-Alcocer e Laura Cristina Berumen. "Ultrastructural changes associated to the neuroendocrine transdifferentiation of the lung adenocarcinoma cell line A549". Acta Histochemica 123, n.º 8 (dezembro de 2021): 151797. http://dx.doi.org/10.1016/j.acthis.2021.151797.
Texto completo da fonteOELRICH, FELIX, HEIKE JUNKER, MATTHIAS B. STOPE, HOLGER H. H. ERB, REINHARD WALTHER, SIMONE VENZ e UWE ZIMMERMANN. "Gelsolin Governs the Neuroendocrine Transdifferentiation of Prostate Cancer Cells and Suppresses the Apoptotic Machinery". Anticancer Research 41, n.º 8 (19 de julho de 2021): 3717–29. http://dx.doi.org/10.21873/anticanres.15163.
Texto completo da fonteTurner, Leo, Andrew Burbanks e Marianna Cerasuolo. "PCa dynamics with neuroendocrine differentiation and distributed delay". Mathematical Biosciences and Engineering 18, n.º 6 (2021): 8577–602. http://dx.doi.org/10.3934/mbe.2021425.
Texto completo da fonteDankert, Jaroslaw Thomas, Marc Wiesehöfer, Elena Dilara Czyrnik, Bernhard B. Singer, Nicola von Ostau e Gunther Wennemuth. "The deregulation of miR-17/CCND1 axis during neuroendocrine transdifferentiation of LNCaP prostate cancer cells". PLOS ONE 13, n.º 7 (12 de julho de 2018): e0200472. http://dx.doi.org/10.1371/journal.pone.0200472.
Texto completo da fonteAngelucci, A., P. Muzi, G. Pace, L. Cristiano, A. M. Cimini, M. P. Ceru, C. Vicentini e M. Bologna. "513 NEUROENDOCRINE TRANSDIFFERENTIATION INDUCED BY HDAC INHIBITORS CONFERS RESISTANCE TO ANTIBLASTIC THERAPY IN PROSTATE CARCINOMA". European Urology Supplements 8, n.º 4 (março de 2009): 249. http://dx.doi.org/10.1016/s1569-9056(09)60509-1.
Texto completo da fonteBURCHARDT, TATJANA, MARTIN BURCHARDT, MIN-WEI CHEN, YICHEN CAO, ALEXANDRE DE LA TAILLE, AHMED SHABSIGH, OMAR HAYEK, THAMBI DORAI e RALPH BUTTYAN. "TRANSDIFFERENTIATION OF PROSTATE CANCER CELLS TO A NEUROENDOCRINE CELL PHENOTYPE IN VITRO AND IN VIVO". Journal of Urology 162, n.º 5 (novembro de 1999): 1800–1805. http://dx.doi.org/10.1016/s0022-5347(05)68241-9.
Texto completo da fonteBraadland, Peder R., Håkon Ramberg, Helene Hartvedt Grytli, Alfonso Urbanucci, Heidi Kristin Nielsen, Ingrid Jenny Guldvik, Andreas Engedal et al. "The β2-Adrenergic Receptor Is a Molecular Switch for Neuroendocrine Transdifferentiation of Prostate Cancer Cells". Molecular Cancer Research 17, n.º 11 (8 de agosto de 2019): 2154–68. http://dx.doi.org/10.1158/1541-7786.mcr-18-0605.
Texto completo da fonteKim, Soojin, Daksh Thaper, Samir Bidnur, Paul Toren, Shusuke Akamatsu, Jennifer L. Bishop, Colin Colins, Sepideh Vahid e Amina Zoubeidi. "PEG10 is associated with treatment-induced neuroendocrine prostate cancer". Journal of Molecular Endocrinology 63, n.º 1 (julho de 2019): 39–49. http://dx.doi.org/10.1530/jme-18-0226.
Texto completo da fonteInoue, Y., e W. Lockwood. "MA22.02 Activation of MAPK Suppresses Neuroendocrine Transcription Factors and Causes Transdifferentiation of Small Cell Lung Cancer". Journal of Thoracic Oncology 13, n.º 10 (outubro de 2018): S433—S434. http://dx.doi.org/10.1016/j.jtho.2018.08.502.
Texto completo da fontePernicová, Zuzana, Eva Slabáková, Radek Fedr, Šárka Šimečková, Josef Jaroš, Tereza Suchánková, Jan Bouchal et al. "The role of high cell density in the promotion of neuroendocrine transdifferentiation of prostate cancer cells". Molecular Cancer 13, n.º 1 (2014): 113. http://dx.doi.org/10.1186/1476-4598-13-113.
Texto completo da fonteShen, Ruoqian, Thambi Dorai, Matthias Szaboles, Aaron E. Katz, Carl A. Olsson e Ralph Buttyan. "Transdifferentiation of cultured human prostate cancer cells to a neuroendocrine cell phenotype in a hormone-depleted medium". Urologic Oncology: Seminars and Original Investigations 3, n.º 2 (março de 1997): 67–75. http://dx.doi.org/10.1016/s1078-1439(97)00039-2.
Texto completo da fonteIndo, Sebastián, Octavio Orellana-Serradell, María José Torres, Enrique A. Castellón e Héctor R. Contreras. "Overexpression of REST Represses the Epithelial–Mesenchymal Transition Process and Decreases the Aggressiveness of Prostate Cancer Cells". International Journal of Molecular Sciences 25, n.º 6 (15 de março de 2024): 3332. http://dx.doi.org/10.3390/ijms25063332.
Texto completo da fonteZhao, Kaihong. "Attractor of a nonlinear hybrid reaction–diffusion model of neuroendocrine transdifferentiation of human prostate cancer cells with time-lags". AIMS Mathematics 8, n.º 6 (2023): 14426–48. http://dx.doi.org/10.3934/math.2023737.
Texto completo da fonteVlachostergios, Panagiotis J., Athanasios Karathanasis e Vassilios Tzortzis. "Expression of Fibroblast Activation Protein Is Enriched in Neuroendocrine Prostate Cancer and Predicts Worse Survival". Genes 13, n.º 1 (13 de janeiro de 2022): 135. http://dx.doi.org/10.3390/genes13010135.
Texto completo da fonteBishop, Jennifer L., Alastair Davies, Kirsi Ketola e Amina Zoubeidi. "Regulation of tumor cell plasticity by the androgen receptor in prostate cancer". Endocrine-Related Cancer 22, n.º 3 (1 de maio de 2015): R165—R182. http://dx.doi.org/10.1530/erc-15-0137.
Texto completo da fonteDavidoff, Michail S., Ralf Middendorff, Grigori Enikolopov, Dieter Riethmacher, Adolf F. Holstein e Dieter Müller. "Progenitor cells of the testosterone-producing Leydig cells revealed". Journal of Cell Biology 167, n.º 5 (29 de novembro de 2004): 935–44. http://dx.doi.org/10.1083/jcb.200409107.
Texto completo da fonteSivanandhan, Dhanalakshmi, Sridharan Rajagopal, Chandru Gajendran, Naveen Sadhu, Mohd Zainuddin, Ramachandraiah Gosu e Luca Rastelli. "Abstract B029: LSD1-HDAC6 dual inhibitor JBI-802 is an epigenetic modulating agent with a novel mechanism of action that target MYC amplification in multiple neuroendocrine tumor types". Cancer Research 82, n.º 23_Supplement_2 (1 de dezembro de 2022): B029. http://dx.doi.org/10.1158/1538-7445.cancepi22-b029.
Texto completo da fonteQiao, Yuanyuan, Chungen Li, Yang Zheng, Xia Jiang, Sarah Nicole Yee, Caleb Cheng, Yi Bao et al. "Abstract 2898: Development of the lipid kinase PIKfyve PROTAC degrader against neuroendocrine prostate cancer". Cancer Research 84, n.º 6_Supplement (22 de março de 2024): 2898. http://dx.doi.org/10.1158/1538-7445.am2024-2898.
Texto completo da fonteBae, Song Yi, Hannah E. Bergom, Abderrahman Day, Joseph T. Greene, Tanya S. Freedman, Justin H. Hwang e Justin M. Drake. "Abstract B057: ZBTB7A as a novel vulnerability in neuroendocrine prostate cancer". Cancer Research 83, n.º 11_Supplement (2 de junho de 2023): B057. http://dx.doi.org/10.1158/1538-7445.prca2023-b057.
Texto completo da fonteSyder, A. J., S. M. Karam, J. C. Mills, J. E. Ippolito, H. R. Ansari, V. Farook e J. I. Gordon. "A transgenic mouse model of metastatic carcinoma involving transdifferentiation of a gastric epithelial lineage progenitor to a neuroendocrine phenotype". Proceedings of the National Academy of Sciences 101, n.º 13 (30 de março de 2004): 4471–76. http://dx.doi.org/10.1073/pnas.0307983101.
Texto completo da fonteAngelucci, Adriano, Paola Muzi, Loredana Cristiano, Danilo Millimaggi, AnnaMaria Cimini, Vincenza Dolo, Roberto Miano, Carlo Vicentini, Maria Paola Cerù e Mauro Bologna. "Neuroendocrine transdifferentiation induced by VPA is mediated by PPARγ activation and confers resistance to antiblastic therapy in prostate carcinoma". Prostate 68, n.º 6 (1 de maio de 2008): 588–98. http://dx.doi.org/10.1002/pros.20708.
Texto completo da fonte