Artigos de revistas sobre o tema "Neural ODEs"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Neural ODEs".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Filici, Cristian. "On a Neural Approximator to ODEs". IEEE Transactions on Neural Networks 19, n.º 3 (março de 2008): 539–43. http://dx.doi.org/10.1109/tnn.2007.915109.
Texto completo da fonteZhou, Fan, e Liang Li. "Forecasting Reservoir Inflow via Recurrent Neural ODEs". Proceedings of the AAAI Conference on Artificial Intelligence 35, n.º 17 (18 de maio de 2021): 15025–32. http://dx.doi.org/10.1609/aaai.v35i17.17763.
Texto completo da fonteCui, Wenjun, Honglei Zhang, Haoyu Chu, Pipi Hu e Yidong Li. "On robustness of neural ODEs image classifiers". Information Sciences 632 (junho de 2023): 576–93. http://dx.doi.org/10.1016/j.ins.2023.03.049.
Texto completo da fonteFronk, Colby, e Linda Petzold. "Interpretable polynomial neural ordinary differential equations". Chaos: An Interdisciplinary Journal of Nonlinear Science 33, n.º 4 (abril de 2023): 043101. http://dx.doi.org/10.1063/5.0130803.
Texto completo da fonteZhou, Fan, Liang Li, Kunpeng Zhang e Goce Trajcevski. "Urban flow prediction with spatial–temporal neural ODEs". Transportation Research Part C: Emerging Technologies 124 (março de 2021): 102912. http://dx.doi.org/10.1016/j.trc.2020.102912.
Texto completo da fonteEsteve-Yagüe, Carlos, e Borjan Geshkovski. "Sparsity in long-time control of neural ODEs". Systems & Control Letters 172 (fevereiro de 2023): 105452. http://dx.doi.org/10.1016/j.sysconle.2022.105452.
Texto completo da fonteKuptsov, P. V., A. V. Kuptsova e N. V. Stankevich. "Artificial Neural Network as a Universal Model of Nonlinear Dynamical Systems". Nelineinaya Dinamika 17, n.º 1 (2021): 5–21. http://dx.doi.org/10.20537/nd210102.
Texto completo da fonteGrunbacher, Sophie, Ramin Hasani, Mathias Lechner, Jacek Cyranka, Scott A. Smolka e Radu Grosu. "On the Verification of Neural ODEs with Stochastic Guarantees". Proceedings of the AAAI Conference on Artificial Intelligence 35, n.º 13 (18 de maio de 2021): 11525–35. http://dx.doi.org/10.1609/aaai.v35i13.17372.
Texto completo da fonteRuiz-Balet, Domènec, Elisa Affili e Enrique Zuazua. "Interpolation and approximation via Momentum ResNets and Neural ODEs". Systems & Control Letters 162 (abril de 2022): 105182. http://dx.doi.org/10.1016/j.sysconle.2022.105182.
Texto completo da fonteCuchiero, Christa, Martin Larsson e Josef Teichmann. "Deep Neural Networks, Generic Universal Interpolation, and Controlled ODEs". SIAM Journal on Mathematics of Data Science 2, n.º 3 (janeiro de 2020): 901–19. http://dx.doi.org/10.1137/19m1284117.
Texto completo da fonteZakwan, M., L. Di Natale, B. Svetozarevic, P. Heer, C. N. Jones e G. Ferrari Trecate. "Physically Consistent Neural ODEs for Learning Multi-Physics Systems*". IFAC-PapersOnLine 56, n.º 2 (2023): 5855–60. http://dx.doi.org/10.1016/j.ifacol.2023.10.079.
Texto completo da fonteSandoval, Ilya Orson, Panagiotis Petsagkourakis e Ehecatl Antonio del Rio-Chanona. "Neural ODEs as Feedback Policies for Nonlinear Optimal Control". IFAC-PapersOnLine 56, n.º 2 (2023): 4816–21. http://dx.doi.org/10.1016/j.ifacol.2023.10.1248.
Texto completo da fonteSherry, Ferdia, Elena Celledoni, Matthias J. Ehrhardt, Davide Murari, Brynjulf Owren e Carola-Bibiane Schönlieb. "Designing stable neural networks using convex analysis and ODEs". Physica D: Nonlinear Phenomena 463 (julho de 2024): 134159. http://dx.doi.org/10.1016/j.physd.2024.134159.
Texto completo da fonteHöge, Marvin, Andreas Scheidegger, Marco Baity-Jesi, Carlo Albert e Fabrizio Fenicia. "Improving hydrologic models for predictions and process understanding using neural ODEs". Hydrology and Earth System Sciences 26, n.º 19 (11 de outubro de 2022): 5085–102. http://dx.doi.org/10.5194/hess-26-5085-2022.
Texto completo da fonteLi, Haoxuan. "The advance of neural ordinary differential ordinary differential equations". Applied and Computational Engineering 6, n.º 1 (14 de junho de 2023): 1283–87. http://dx.doi.org/10.54254/2755-2721/6/20230709.
Texto completo da fonteZheng, Bohong. "Ordinary Differential Equation and Its Application". Highlights in Science, Engineering and Technology 72 (15 de dezembro de 2023): 645–51. http://dx.doi.org/10.54097/rnnev212.
Texto completo da fonteBelozyorov, Vasiliy Ye, e Danylo V. Dantsev. "Modeling of Chaotic Processes by Means of Antisymmetric Neural ODEs". Journal of Optimization, Differential Equations and Their Applications 30, n.º 1 (5 de maio de 2022): 1. http://dx.doi.org/10.15421/142201.
Texto completo da fonteBelozyorov, Vasiliy Ye, e Yevhen V. Koshel. "On Systems of Neural ODEs with Generalized Power Activation Functions". Journal of Optimization, Differential Equations and Their Applications 32, n.º 2 (30 de agosto de 2024): 56. https://doi.org/10.15421/142409.
Texto completo da fonteGerstberger, R., e P. Rentrop. "Feedforward neural nets as discretization schemes for ODEs and DAEs". Journal of Computational and Applied Mathematics 82, n.º 1-2 (setembro de 1997): 117–28. http://dx.doi.org/10.1016/s0377-0427(97)00085-x.
Texto completo da fonteGonzalez, Martin, Thibault Defourneau, Hatem Hajri e Mihaly Petreczky. "Realization Theory of Recurrent Neural ODEs using Polynomial System Embeddings". Systems & Control Letters 173 (março de 2023): 105468. http://dx.doi.org/10.1016/j.sysconle.2023.105468.
Texto completo da fonteLuo, Chaoyang, Yan Zou, Wanying Li e Nanjing Huang. "FxTS-Net: Fixed-time stable learning framework for Neural ODEs". Neural Networks 185 (maio de 2025): 107219. https://doi.org/10.1016/j.neunet.2025.107219.
Texto completo da fonteAlkhezi, Yousuf, Yousuf Almubarak e Ahmad Shafee. "Neural-network-based approximations for investigating a Pantograph delay differential equation with application in Algebra". International Journal of Mathematics and Computer Science 20, n.º 1 (2024): 195–209. http://dx.doi.org/10.69793/ijmcs/01.2025/ahmad.
Texto completo da fonteDe Florio, Mario, Enrico Schiassi e Roberto Furfaro. "Physics-informed neural networks and functional interpolation for stiff chemical kinetics". Chaos: An Interdisciplinary Journal of Nonlinear Science 32, n.º 6 (junho de 2022): 063107. http://dx.doi.org/10.1063/5.0086649.
Texto completo da fonteFronk, Colby, Jaewoong Yun, Prashant Singh e Linda Petzold. "Bayesian polynomial neural networks and polynomial neural ordinary differential equations". PLOS Computational Biology 20, n.º 10 (10 de outubro de 2024): e1012414. http://dx.doi.org/10.1371/journal.pcbi.1012414.
Texto completo da fonteTappe, Aike Aline, Moritz Schulze e René Schenkendorf. "Neural ODEs and differential flatness for total least squares parameter estimation". IFAC-PapersOnLine 55, n.º 20 (2022): 421–26. http://dx.doi.org/10.1016/j.ifacol.2022.09.131.
Texto completo da fonteSmaoui, Nejib. "A hybrid neural network model for the dynamics of the Kuramoto-Sivashinsky equation". Mathematical Problems in Engineering 2004, n.º 3 (2004): 305–21. http://dx.doi.org/10.1155/s1024123x0440101x.
Texto completo da fonteMuppidi Maruthi. "Overview of Artificial Neural Network-Based Solution for Ordinary and Partial Differential Equations by Feed Forward Method Using Python". Communications on Applied Nonlinear Analysis 32, n.º 3 (19 de outubro de 2024): 512–24. http://dx.doi.org/10.52783/cana.v32.2012.
Texto completo da fonteWen, Ying, Temuer Chaolu e Xiangsheng Wang. "Solving the initial value problem of ordinary differential equations by Lie group based neural network method". PLOS ONE 17, n.º 4 (6 de abril de 2022): e0265992. http://dx.doi.org/10.1371/journal.pone.0265992.
Texto completo da fonteBradley, William, e Fani Boukouvala. "Two-Stage Approach to Parameter Estimation of Differential Equations Using Neural ODEs". Industrial & Engineering Chemistry Research 60, n.º 45 (8 de novembro de 2021): 16330–44. http://dx.doi.org/10.1021/acs.iecr.1c00552.
Texto completo da fonteHu, Ran, Nan Ma, Bing Li, Kun Chen, Chen Chen, Zhanhua Huang, Fengshu Ye e Chunpeng Pan. "Black-Box Modelling of Active Distribution Network Devices Based on Neural ODEs". Journal of Physics: Conference Series 2826, n.º 1 (1 de agosto de 2024): 012029. http://dx.doi.org/10.1088/1742-6596/2826/1/012029.
Texto completo da fonteNing, Xiao, Jinxing Guan, Xi-An Li, Yongyue Wei e Feng Chen. "Physics-Informed Neural Networks Integrating Compartmental Model for Analyzing COVID-19 Transmission Dynamics". Viruses 15, n.º 8 (16 de agosto de 2023): 1749. http://dx.doi.org/10.3390/v15081749.
Texto completo da fonteAlsharaiah, Mohammad A., Laith H. Baniata, Omar Al Adwan, Orieb Abu Alghanam, Ahmad Adel Abu-Shareha, Laith Alzboon, Nedal Mustafa e Mohammad Baniata. "Neural Network Prediction Model to Explore Complex Nonlinear Behavior in Dynamic Biological Network". International Journal of Interactive Mobile Technologies (iJIM) 16, n.º 12 (21 de junho de 2022): 32–51. http://dx.doi.org/10.3991/ijim.v16i12.30467.
Texto completo da fonteBailleul, Ismael, Carlo Bellingeri, Yvain Bruned, Adeline Fermanian e Nicolas Marie. "Rough paths and SPDE". ESAIM: Proceedings and Surveys 74 (novembro de 2023): 169–84. http://dx.doi.org/10.1051/proc/202374169.
Texto completo da fonteNadar, Sreenivasan Rajamoni, e Vikas Rai. "Transient Periodicity in a Morris-Lecar Neural System". ISRN Biomathematics 2012 (1 de julho de 2012): 1–7. http://dx.doi.org/10.5402/2012/546315.
Texto completo da fonteFabiani, Gianluca, Evangelos Galaris, Lucia Russo e Constantinos Siettos. "Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs". Chaos: An Interdisciplinary Journal of Nonlinear Science 33, n.º 4 (abril de 2023): 043128. http://dx.doi.org/10.1063/5.0135903.
Texto completo da fonteArif, Muhammad Shoaib, Kamaleldin Abodayeh e Yasir Nawaz. "Design of Finite Difference Method and Neural Network Approach for Casson Nanofluid Flow: A Computational Study". Axioms 12, n.º 6 (27 de maio de 2023): 527. http://dx.doi.org/10.3390/axioms12060527.
Texto completo da fonteTan, Chenkai, Yingfeng Cai, Hai Wang, Xiaoqiang Sun e Long Chen. "Vehicle State Estimation Combining Physics-Informed Neural Network and Unscented Kalman Filtering on Manifolds". Sensors 23, n.º 15 (25 de julho de 2023): 6665. http://dx.doi.org/10.3390/s23156665.
Texto completo da fonteB, Vembu, e Loghambal S. "Pseudo-Graph Neural Networks On Ordinary Differential Equations". Journal of Computational Mathematica 6, n.º 1 (22 de março de 2022): 117–23. http://dx.doi.org/10.26524/cm.125.
Texto completo da fonteSchiassi, Enrico, Mario De Florio, Andrea D’Ambrosio, Daniele Mortari e Roberto Furfaro. "Physics-Informed Neural Networks and Functional Interpolation for Data-Driven Parameters Discovery of Epidemiological Compartmental Models". Mathematics 9, n.º 17 (27 de agosto de 2021): 2069. http://dx.doi.org/10.3390/math9172069.
Texto completo da fonteZhu, Qunxi, Yifei Shen, Dongsheng Li e Wei Lin. "Neural Piecewise-Constant Delay Differential Equations". Proceedings of the AAAI Conference on Artificial Intelligence 36, n.º 8 (28 de junho de 2022): 9242–50. http://dx.doi.org/10.1609/aaai.v36i8.20911.
Texto completo da fontePatsatzis, Dimitrios G., Lucia Russo e Constantinos Siettos. "Slow Invariant Manifolds of Fast-Slow Systems of ODEs with Physics-Informed Neural Networks". SIAM Journal on Applied Dynamical Systems 23, n.º 4 (12 de dezembro de 2024): 3077–122. https://doi.org/10.1137/24m1656402.
Texto completo da fonteHuang, Zhanhua, Ran Hu, Nan Ma, Bing Li, Chen Chen, Qiangqiang Guo, Wuping Cheng e Chunpeng Pan. "Black-box modeling of PMSG-based wind energy conversion systems based on neural ODEs". Journal of Physics: Conference Series 2814, n.º 1 (1 de agosto de 2024): 012005. http://dx.doi.org/10.1088/1742-6596/2814/1/012005.
Texto completo da fontePuchkov, Andrey Yu, Yaroslav A. Fedulov, Vladimir S. Minin e Alexander S. Fedulov. "Hybrid digital model based on Neural ODE in the task of increasing the economic efficiency of processing small-ore raw materials". Journal Of Applied Informatics 19, n.º 4 (21 de agosto de 2024): 107–25. http://dx.doi.org/10.37791/2687-0649-2024-19-4-107-125.
Texto completo da fonteSamia Atallah. "The Numerical Methods of Fractional Differential Equations". مجلة جامعة بني وليد للعلوم الإنسانية والتطبيقية 8, n.º 4 (25 de setembro de 2023): 496–512. http://dx.doi.org/10.58916/jhas.v8i4.44.
Texto completo da fonteZaman, Muhammad Adib Uz, e Dongping Du. "A Stochastic Multivariate Irregularly Sampled Time Series Imputation Method for Electronic Health Records". BioMedInformatics 1, n.º 3 (16 de novembro de 2021): 166–81. http://dx.doi.org/10.3390/biomedinformatics1030011.
Texto completo da fonteNiu, Haiqiang. "Evaluation of data-driven neural operators in ocean acoustic propagation modeling". Journal of the Acoustical Society of America 155, n.º 3_Supplement (1 de março de 2024): A44. http://dx.doi.org/10.1121/10.0026741.
Texto completo da fonteDong, Xunde, e Cong Wang. "Identification of the FitzHugh–Nagumo Model Dynamics via Deterministic Learning". International Journal of Bifurcation and Chaos 25, n.º 12 (novembro de 2015): 1550159. http://dx.doi.org/10.1142/s021812741550159x.
Texto completo da fonteYang, Chengdong, Zhenxing Li, Xiangyong Chen, Ancai Zhang e Jianlong Qiu. "Boundary Control for Exponential Synchronization of Reaction-Diffusion Neural Networks Based on Coupled PDE-ODEs". IFAC-PapersOnLine 53, n.º 2 (2020): 3415–20. http://dx.doi.org/10.1016/j.ifacol.2020.12.2543.
Texto completo da fonteHopkins, Michael, Mantas Mikaitis, Dave R. Lester e Steve Furber. "Stochastic rounding and reduced-precision fixed-point arithmetic for solving neural ordinary differential equations". Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 378, n.º 2166 (20 de janeiro de 2020): 20190052. http://dx.doi.org/10.1098/rsta.2019.0052.
Texto completo da fonteYin, Qiang, Juntong Cai, Xue Gong e Qian Ding. "Local parameter identification with neural ordinary differential equations". Applied Mathematics and Mechanics 43, n.º 12 (dezembro de 2022): 1887–900. http://dx.doi.org/10.1007/s10483-022-2926-9.
Texto completo da fonte