Literatura científica selecionada sobre o tema "Neural ODEs"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Neural ODEs".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Neural ODEs"
Filici, Cristian. "On a Neural Approximator to ODEs". IEEE Transactions on Neural Networks 19, n.º 3 (março de 2008): 539–43. http://dx.doi.org/10.1109/tnn.2007.915109.
Texto completo da fonteZhou, Fan, e Liang Li. "Forecasting Reservoir Inflow via Recurrent Neural ODEs". Proceedings of the AAAI Conference on Artificial Intelligence 35, n.º 17 (18 de maio de 2021): 15025–32. http://dx.doi.org/10.1609/aaai.v35i17.17763.
Texto completo da fonteCui, Wenjun, Honglei Zhang, Haoyu Chu, Pipi Hu e Yidong Li. "On robustness of neural ODEs image classifiers". Information Sciences 632 (junho de 2023): 576–93. http://dx.doi.org/10.1016/j.ins.2023.03.049.
Texto completo da fonteFronk, Colby, e Linda Petzold. "Interpretable polynomial neural ordinary differential equations". Chaos: An Interdisciplinary Journal of Nonlinear Science 33, n.º 4 (abril de 2023): 043101. http://dx.doi.org/10.1063/5.0130803.
Texto completo da fonteZhou, Fan, Liang Li, Kunpeng Zhang e Goce Trajcevski. "Urban flow prediction with spatial–temporal neural ODEs". Transportation Research Part C: Emerging Technologies 124 (março de 2021): 102912. http://dx.doi.org/10.1016/j.trc.2020.102912.
Texto completo da fonteEsteve-Yagüe, Carlos, e Borjan Geshkovski. "Sparsity in long-time control of neural ODEs". Systems & Control Letters 172 (fevereiro de 2023): 105452. http://dx.doi.org/10.1016/j.sysconle.2022.105452.
Texto completo da fonteKuptsov, P. V., A. V. Kuptsova e N. V. Stankevich. "Artificial Neural Network as a Universal Model of Nonlinear Dynamical Systems". Nelineinaya Dinamika 17, n.º 1 (2021): 5–21. http://dx.doi.org/10.20537/nd210102.
Texto completo da fonteGrunbacher, Sophie, Ramin Hasani, Mathias Lechner, Jacek Cyranka, Scott A. Smolka e Radu Grosu. "On the Verification of Neural ODEs with Stochastic Guarantees". Proceedings of the AAAI Conference on Artificial Intelligence 35, n.º 13 (18 de maio de 2021): 11525–35. http://dx.doi.org/10.1609/aaai.v35i13.17372.
Texto completo da fonteRuiz-Balet, Domènec, Elisa Affili e Enrique Zuazua. "Interpolation and approximation via Momentum ResNets and Neural ODEs". Systems & Control Letters 162 (abril de 2022): 105182. http://dx.doi.org/10.1016/j.sysconle.2022.105182.
Texto completo da fonteCuchiero, Christa, Martin Larsson e Josef Teichmann. "Deep Neural Networks, Generic Universal Interpolation, and Controlled ODEs". SIAM Journal on Mathematics of Data Science 2, n.º 3 (janeiro de 2020): 901–19. http://dx.doi.org/10.1137/19m1284117.
Texto completo da fonteTeses / dissertações sobre o assunto "Neural ODEs"
Monsel, Thibault. "Deep Learning for Partially Observed Dynamical Systems". Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASG113.
Texto completo da fontePartial Differential Equations (PDEs) are the cornerstone of modeling dynamical systems across various scientific disciplines. Traditionally, scientists employ a rigorous methodology to interact with physical processes, collect empirical data, and derive theoretical models. However, even when these models align closely with observed data, which is often not the case, the necessary simplifications made for study and simulation can obscure our understanding of the underlying phenomena.This thesis explores how data acquired from dynamical systems can be utilized to improve and/or derive better models. The manuscript focuses particularly on partially observed dynamics, where the system's full state is not completely measured or observed. Through the theory of partially observed systems, including the Mori-Zwanzig formalism and Takens' theorem, we motivate a non-Markovian structure, specifically Delay Differential Equations (DDEs).By combining the expressive power of neural networks with DDEs, we propose novel models for partially observed systems. As neural network-based DDEs (Neural DDEs) are still in their infancy, we extend the current state of the art in this field by studying and benchmarking Neural DDE models with a-priori known arbitrary delay types across a variety of dynamical systems. These benchmarks include systems, with time-dependent and state-dependent delays. Building upon these investigations, we then explore the parameterization of constant delays in Neural DDEs. Our findings demonstrate that introducing learnable constant delays, as opposed to fixed delay configurations, results in improved overall performance in dynamical system modeling and fitting.We then apply the non-Markovian Neural DDEs with learnable constant delays to dynamical system closure and correction modeling, demonstrating improved long-term accuracy compared to Ordinary Differential Equation terms. Lastly, we explore the use of Neural DDEs in the context of Model Predictive Control (MPC) for controlling dynamical systems
Tacuri, Patrícia Hilario. "Equações diferenciais funcionais neutras, comportamento assintótico e representação". Universidade de São Paulo, 2013. http://www.teses.usp.br/teses/disponiveis/55/55135/tde-02042013-104407/.
Texto completo da fonteThe aim of this work is to investigate qualitative properties of neutral functional differential equations (NFDEs) and introduce a general class of equations called measure NFDE . We obtain results on the asymptotic behavior for a class of NFDEs with periodic coefficients, where the period and delay are rationally related. Moreover, we show that the exponential dichotomy of the solution operator of non autonomous retarded functional differential equations (RFDEs) implies the existence of bounded solutions to the associated non homogeneous RFDEs. Finally, using the theory of generalized ordinary differential equations (generalized ODEs), we obtain results of existence and uniqueness, continuous dependence on parameters of the solutions of measure NFDEs. The new results presented in this work are contained in the articles [31,43]
Khudhair, Ali Dheyaa. "VECTOR QUANTIZATION USING ODE BASED NEURAL NETWORK WITH VARYING VIGILANCE PARAMETER". OpenSIUC, 2012. https://opensiuc.lib.siu.edu/dissertations/478.
Texto completo da fonteKortmann, Konstantin. "Abriss und Neubau oder Kernsanierung? eine empirische Untersuchung zur Nutzungsdauer von Wohngebäuden des 20. Jahrhunderts im Ruhrgebiet". Köln R. Müller, 2007. http://d-nb.info/990659798/04.
Texto completo da fonteWermann, Silke. "Analytik von phenolischen Substanzen und Epoxiden in Materialien mit Lebensmittel- und/oder dermalem Kontakt". Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2008. http://nbn-resolving.de/urn:nbn:de:bsz:14-ds-1228839995955-73499.
Texto completo da fonteHorečný, Peter. "Metody segmentace obrazu s malými trénovacími množinami". Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2020. http://www.nusl.cz/ntk/nusl-412996.
Texto completo da fonteGarnier, Aurélie. "Dynamiques neuro-gliales locales et réseaux complexes pour l'étude de la relation entre structure et fonction cérébrales". Thesis, Paris 6, 2015. http://www.theses.fr/2015PA066562/document.
Texto completo da fonteA current issue in neuroscience is to elaborate computational models that are able to reproduce experimental data recorded with various imaging methods, and allowing us to study the relationship between structure and function in the human brain. The modeling objectives of this work are two scales and the model analysis need the development of specific theoretical and numerical tools. At the local scale, we propose a new ordinary differential equations model generating neuronal activities. We characterize and classify the behaviors the model can generate, we compare the model outputs to experimental data and we identify the dynamical structures of the neural compartment underlying the generation of pathological patterns. We then extend this approach to a new neuro-glial mass model: a bilateral coupling between the neural compartment and a new one modeling the impact of astrocytes on neurotransmitter concentrations and the feedback of these concentrations on neural activity is developed. We obtain a theoretical characterization of these feedbacks impact on neuronal excitability by formalizing the variation of a bifurcation value as a problem of optimization under constraint. Finally, we propose a network model, which node dynamics are based on the local neuro-glial mass model, embedding a neuronal coupling and a glial one. We numerically observe the differential propagations of information according to each of these coupling types and their cumulated impact, we highlight qualitatively distinct patterns of neural and glial activities of each node, and link the transitions between behaviors with the dynamical structures identified in the local models
Garnier, Aurélie. "Dynamiques neuro-gliales locales et réseaux complexes pour l'étude de la relation entre structure et fonction cérébrales". Electronic Thesis or Diss., Paris 6, 2015. http://www.theses.fr/2015PA066562.
Texto completo da fonteA current issue in neuroscience is to elaborate computational models that are able to reproduce experimental data recorded with various imaging methods, and allowing us to study the relationship between structure and function in the human brain. The modeling objectives of this work are two scales and the model analysis need the development of specific theoretical and numerical tools. At the local scale, we propose a new ordinary differential equations model generating neuronal activities. We characterize and classify the behaviors the model can generate, we compare the model outputs to experimental data and we identify the dynamical structures of the neural compartment underlying the generation of pathological patterns. We then extend this approach to a new neuro-glial mass model: a bilateral coupling between the neural compartment and a new one modeling the impact of astrocytes on neurotransmitter concentrations and the feedback of these concentrations on neural activity is developed. We obtain a theoretical characterization of these feedbacks impact on neuronal excitability by formalizing the variation of a bifurcation value as a problem of optimization under constraint. Finally, we propose a network model, which node dynamics are based on the local neuro-glial mass model, embedding a neuronal coupling and a glial one. We numerically observe the differential propagations of information according to each of these coupling types and their cumulated impact, we highlight qualitatively distinct patterns of neural and glial activities of each node, and link the transitions between behaviors with the dynamical structures identified in the local models
Bělohlávek, Jiří. "Agent pro kurzové sázení". Master's thesis, Vysoké učení technické v Brně. Fakulta informačních technologií, 2008. http://www.nusl.cz/ntk/nusl-235980.
Texto completo da fonteGeraldes, Carlos José Brás. "Aplicação das redes neuronais aditivas generalizadas à Medicina". Doctoral thesis, 2017. http://hdl.handle.net/10362/20114.
Texto completo da fonteABSTRACT: The application of artificial neural networks has been increasing in many areas of knowledge, much due to the flexibility that features these models and they allow to model data not only from more complex situations, such as pattern recognition and voice data but also simpler such as, for example, those that reflect relationships between multiple independent variables, and a outcome (dependent variable). A widely used architecture is the Multi Layer Perceptron (MLP). However, despite its popularity in several areas of knowledge, this model is less used in the clinical context that the Generalized Linear Models (GLMs) and the Generalized Additive Models (GAMs), due to the fact that, the MLP works as a black box. In the other hand, the Generalized Additive Neural Network (GANN) besides producing good estimates, allows the interpretation of the effect of each covariate on the outcome. Those features makes this type of neural network much more promising in the clinical area. On the other hand, concerning the regression models, several authors have reported that a bad choice of the link function can affect, in some cases, the model performance; so, studies have been developed in order to solve this issue by the introduction of a flexible link function either (parametric or nonparametric). In the case of a GANN, given the low number of studies about this architecture, we find that nothing has been done regarding the estimation of the link function using parametric methods, becoming this one goal of the present study. The link function estimation by using nonparametric methods was also approached. Another goal included the implement of methods for the determination of confidence intervals of the partial functions and the odds ratio function, which substantially improved the interpretability of the results of this type of neural network.
Livros sobre o assunto "Neural ODEs"
Seiferlein, Werner. Vor- und Nachteile von Neubau oder Sanierung im Bestand. Wiesbaden: Springer Fachmedien Wiesbaden, 2019. http://dx.doi.org/10.1007/978-3-658-25125-3.
Texto completo da fonte1882-1945, Neurath Otto, Neurath Paul e Nemeth Elisabeth, eds. Otto Neurath, oder, Die Einheit von Wissenschaft und Gesellschaft. Wien: Böhlau, 1994.
Encontre o texto completo da fonteMazzola, Guerino, Gérard Milmeister e Jody Weissmann. Comprehensive Mathematics for Computer Scientists 2: Calculus and ODEs, Splines, Probability, Fourier and Wavelet Theory, Fractals and Neural Networks, Categories and Lambda Calculus. Springer London, Limited, 2006.
Encontre o texto completo da fonteNeuman, Susan B. Changing the Odds for Children at Risk. Greenwood Publishing Group, Inc., 2008. http://dx.doi.org/10.5040/9798400624575.
Texto completo da fonteFun Palace 200X: Der Berliner Schlossplatz : Abriss, Neubau oder grüne Wiese? Berlin: Martin Schmitz, 2005.
Encontre o texto completo da fonteDesign, Kawea. Hausbautagebuch: Das Bautagebuch Für Alle Bauherren, Bauleiter, Familien Egal Ob Neubau Oder Renovierung. Independently Published, 2021.
Encontre o texto completo da fonteAufbau, Umbau oder Neubau einer Bibliothek: Informationsquellen zu den Themen Raum und Einrichtung. Saarbrücken: VDM Verlag Dr. Müller, 2008.
Encontre o texto completo da fonteSeiferlein, Werner. Vor- und Nachteile von Neubau oder Sanierung im Bestand: Schnelleinstieg für Architekten und Bauingenieure. Springer Vieweg, 2019.
Encontre o texto completo da fonteHistorische Eisenbahnbrücken. Fraunhofer IRB Verlag, 2019. http://dx.doi.org/10.51202/9783738802528.
Texto completo da fontePublikationen, M. Krohne. Bauplaner Für Mein Traumhaus: Ein Nice Durchorganisierter Kalender Für Dein Zuhause - Ob Neubau Oder Renovierung - Behalte Den Überblick Wie ein Pro. Independently Published, 2019.
Encontre o texto completo da fonteCapítulos de livros sobre o assunto "Neural ODEs"
Grouchy, Paul, e Gabriele M. T. D’Eleuterio. "Supplanting Neural Networks with ODEs in Evolutionary Robotics". In Lecture Notes in Computer Science, 299–308. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-17298-4_31.
Texto completo da fonteJosias, Shane, e Willie Brink. "Jacobian Norm Regularisation and Conditioning in Neural ODEs". In Artificial Intelligence Research, 31–45. Cham: Springer Nature Switzerland, 2022. http://dx.doi.org/10.1007/978-3-031-22321-1_3.
Texto completo da fonteChen, Eric Z., Terrence Chen e Shanhui Sun. "MRI Image Reconstruction via Learning Optimization Using Neural ODEs". In Medical Image Computing and Computer Assisted Intervention – MICCAI 2020, 83–93. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-59713-9_9.
Texto completo da fontePandey, Prashant, Aleti Vardhan, Mustafa Chasmai, Tanuj Sur e Brejesh Lall. "Adversarially Robust Prototypical Few-Shot Segmentation with Neural-ODEs". In Lecture Notes in Computer Science, 77–87. Cham: Springer Nature Switzerland, 2022. http://dx.doi.org/10.1007/978-3-031-16452-1_8.
Texto completo da fonteXu, Junshen, Eric Z. Chen, Xiao Chen, Terrence Chen e Shanhui Sun. "Multi-scale Neural ODEs for 3D Medical Image Registration". In Medical Image Computing and Computer Assisted Intervention – MICCAI 2021, 213–23. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-87202-1_21.
Texto completo da fonteKloberdanz, Eliska, e Wei Le. "S-SOLVER: Numerically Stable Adaptive Step Size Solver for Neural ODEs". In Artificial Neural Networks and Machine Learning – ICANN 2023, 388–400. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-44201-8_32.
Texto completo da fonteBhaya, Amit, Fernando A. Pazos e Eugenius Kaszkurewicz. "Comparative Study of the CG and HBF ODEs Used in the Global Minimization of Nonconvex Functions". In Artificial Neural Networks – ICANN 2009, 668–77. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-04274-4_69.
Texto completo da fonteJulmi, Christian, Anna Eifert, Jakob E. Dammert e Sebastian Wittwer. "Typen von Atmosphären". In essentials, 43–49. Wiesbaden: Springer Fachmedien Wiesbaden, 2024. http://dx.doi.org/10.1007/978-3-658-45074-8_5.
Texto completo da fonteFlorack, Martin. "Renovierung oder Neubau?" In Regierungszentralen, 143–67. Wiesbaden: VS Verlag für Sozialwissenschaften, 2011. http://dx.doi.org/10.1007/978-3-531-93016-9_6.
Texto completo da fonteBörgers, Christoph. "The Classical Hodgkin-Huxley ODEs". In An Introduction to Modeling Neuronal Dynamics, 15–21. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-51171-9_3.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Neural ODEs"
Sochopoulos, Andreas, Michael Gienger e Sethu Vijayakumar. "Learning Deep Dynamical Systems using Stable Neural ODEs". In 2024 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 11163–70. IEEE, 2024. https://doi.org/10.1109/iros58592.2024.10801826.
Texto completo da fonteChen, Zhang, Wei Zhu, Jingsui Li, Hanlin Bian e Chao Pei. "Model Reconstruction Based on Physical-Informed Polynomial Neural ODEs". In 2024 IEEE 13th Data Driven Control and Learning Systems Conference (DDCLS), 91–97. IEEE, 2024. http://dx.doi.org/10.1109/ddcls61622.2024.10606885.
Texto completo da fonteZimmering, Bernd, Jan-Philipp Roche e Oliver Niggemann. "Enhancing Nonlinear Electrical Circuit Modeling with Prior Knowledge-Infused Neural ODEs". In 2024 IEEE 29th International Conference on Emerging Technologies and Factory Automation (ETFA), 01–08. IEEE, 2024. http://dx.doi.org/10.1109/etfa61755.2024.10711112.
Texto completo da fonteNawaz, Farhad, Tianyu Li, Nikolai Matni e Nadia Figueroa. "Learning Complex Motion Plans using Neural ODEs with Safety and Stability Guarantees". In 2024 IEEE International Conference on Robotics and Automation (ICRA), 17216–22. IEEE, 2024. http://dx.doi.org/10.1109/icra57147.2024.10611584.
Texto completo da fonteBoersma, Sjoerd, e Xiaodong Cheng. "A Bayesian Neural ODE for a Lettuce Greenhouse". In 2024 IEEE Conference on Control Technology and Applications (CCTA), 782–86. IEEE, 2024. http://dx.doi.org/10.1109/ccta60707.2024.10666596.
Texto completo da fonteXu, Yucheng, Nanbo Li, Arushi Goel, Zonghai Yao, Zijian Guo, Hamidreza Kasaei, Mohammadreza Kasaei e Zhibin Li. "TiV-ODE: A Neural ODE-based Approach for Controllable Video Generation From Text-Image Pairs". In 2024 IEEE International Conference on Robotics and Automation (ICRA), 14645–52. IEEE, 2024. http://dx.doi.org/10.1109/icra57147.2024.10610149.
Texto completo da fonteAntal, Ákos, Bálint Szabó, Ákos Szlávecz, Katalin Kovács, J. Geoffrey Chase e Balázs Benyó. "Applying Neural ODE-Based Cardiovascular Model Identification for Experimental Data Analysis". In 2024 IEEE 18th International Symposium on Applied Computational Intelligence and Informatics (SACI), 000437–42. IEEE, 2024. http://dx.doi.org/10.1109/saci60582.2024.10619737.
Texto completo da fonteZiegelman, Liran, e Manuel E. Hernandez. "Application of a Neural ODE to Classify Motion Control Strategy using EEG". In 2024 46th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 1–4. IEEE, 2024. https://doi.org/10.1109/embc53108.2024.10782326.
Texto completo da fonteJiang, Yu-Chen, e Jun-Min Wang. "Neural operators of backstepping controller gain kernels for an ODE cascaded with a reaction-diffusion equation". In 2024 43rd Chinese Control Conference (CCC), 1099–104. IEEE, 2024. http://dx.doi.org/10.23919/ccc63176.2024.10661479.
Texto completo da fonteZhao, Shiyao, Yucheng Xu, Mohammadreza Kasaei, Mohsen Khadem e Zhibin Li. "Neural ODE-based Imitation Learning (NODE-IL): Data-Efficient Imitation Learning for Long-Horizon Multi-Skill Robot Manipulation". In 2024 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 8524–30. IEEE, 2024. https://doi.org/10.1109/iros58592.2024.10802736.
Texto completo da fonteRelatórios de organizações sobre o assunto "Neural ODEs"
Jain, Anand. Neural ODEs for Light Curves Classifying and Approximating Light Curves. Office of Scientific and Technical Information (OSTI), agosto de 2019. http://dx.doi.org/10.2172/1614721.
Texto completo da fonteFiliz, Ibrahim. Overconfidence: Der Einfluss positiver und negativer Affekte. Sonderforschungsgruppe Institutionenanalyse, 2017. http://dx.doi.org/10.46850/sofia.9783941627598.
Texto completo da fonteZiegler, Britta. Die archäologischen Untersuchungen des Wasserschlosses Allersberg 2008. Otto-Friedrich-Universität Bamberg, 2023. http://dx.doi.org/10.20378/irb-91142.
Texto completo da fonte