Literatura científica selecionada sobre o tema "Neural networks (Computer science)"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Neural networks (Computer science)".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Neural networks (Computer science)"
Mijwel, Maad M., Adam Esen e Aysar Shamil. "Overview of Neural Networks". Babylonian Journal of Machine Learning 2023 (11 de agosto de 2023): 42–45. http://dx.doi.org/10.58496/bjml/2023/008.
Texto completo da fonteCottrell, G. W. "COMPUTER SCIENCE: New Life for Neural Networks". Science 313, n.º 5786 (28 de julho de 2006): 454–55. http://dx.doi.org/10.1126/science.1129813.
Texto completo da fonteLi, Xiao Guang. "Research on the Development and Applications of Artificial Neural Networks". Applied Mechanics and Materials 556-562 (maio de 2014): 6011–14. http://dx.doi.org/10.4028/www.scientific.net/amm.556-562.6011.
Texto completo da fonteSchöneburg, E. "Neural networks hunt computer viruses". Neurocomputing 2, n.º 5-6 (julho de 1991): 243–48. http://dx.doi.org/10.1016/0925-2312(91)90027-9.
Texto completo da fonteTurega, M. A. "Neural Networks". Computer Journal 35, n.º 3 (1 de junho de 1992): 290. http://dx.doi.org/10.1093/comjnl/35.3.290.
Texto completo da fonteWidrow, Bernard, David E. Rumelhart e Michael A. Lehr. "Neural networks". Communications of the ACM 37, n.º 3 (março de 1994): 93–105. http://dx.doi.org/10.1145/175247.175257.
Texto completo da fonteBegum, Afsana, Md Masiur Rahman e Sohana Jahan. "Medical diagnosis using artificial neural networks". Mathematics in Applied Sciences and Engineering 5, n.º 2 (4 de junho de 2024): 149–64. http://dx.doi.org/10.5206/mase/17138.
Texto completo da fonteYen, Gary G., e Haiming Lu. "Hierarchical Rank Density Genetic Algorithm for Radial-Basis Function Neural Network Design". International Journal of Computational Intelligence and Applications 03, n.º 03 (setembro de 2003): 213–32. http://dx.doi.org/10.1142/s1469026803000975.
Texto completo da fonteCavallaro, Lucia, Ovidiu Bagdasar, Pasquale De Meo, Giacomo Fiumara e Antonio Liotta. "Artificial neural networks training acceleration through network science strategies". Soft Computing 24, n.º 23 (9 de setembro de 2020): 17787–95. http://dx.doi.org/10.1007/s00500-020-05302-y.
Texto completo da fonteKumar, G. Prem, e P. Venkataram. "Network restoration using recurrent neural networks". International Journal of Network Management 8, n.º 5 (setembro de 1998): 264–73. http://dx.doi.org/10.1002/(sici)1099-1190(199809/10)8:5<264::aid-nem298>3.0.co;2-o.
Texto completo da fonteTeses / dissertações sobre o assunto "Neural networks (Computer science)"
Landassuri, Moreno Victor Manuel. "Evolution of modular neural networks". Thesis, University of Birmingham, 2012. http://etheses.bham.ac.uk//id/eprint/3243/.
Texto completo da fonteSloan, Cooper Stokes. "Neural bus networks". Thesis, Massachusetts Institute of Technology, 2018. http://hdl.handle.net/1721.1/119711.
Texto completo da fonteThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (pages 65-68).
Bus schedules are unreliable, leaving passengers waiting and increasing commute times. This problem can be solved by modeling the traffic network, and delivering predicted arrival times to passengers. Research attempts to model traffic networks use historical, statistical and learning based models, with learning based models achieving the best results. This research compares several neural network architectures trained on historical data from Boston buses. Three models are trained: multilayer perceptron, convolutional neural network and recurrent neural network. Recurrent neural networks show the best performance when compared to feed forward models. This indicates that neural time series models are effective at modeling bus networks. The large amount of data available for training bus network models and the effectiveness of large neural networks at modeling this data show that great progress can be made in improving commutes for passengers.
by Cooper Stokes Sloan.
M. Eng.
Khan, Altaf Hamid. "Feedforward neural networks with constrained weights". Thesis, University of Warwick, 1996. http://wrap.warwick.ac.uk/4332/.
Texto completo da fonteZaghloul, Waleed A. Lee Sang M. "Text mining using neural networks". Lincoln, Neb. : University of Nebraska-Lincoln, 2005. http://0-www.unl.edu.library.unl.edu/libr/Dissertations/2005/Zaghloul.pdf.
Texto completo da fonteTitle from title screen (sites viewed on Oct. 18, 2005). PDF text: 100 p. : col. ill. Includes bibliographical references (p. 95-100 of dissertation).
Hadjifaradji, Saeed. "Learning algorithms for restricted neural networks". Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2000. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape3/PQDD_0016/NQ48102.pdf.
Texto completo da fonteCheung, Ka Kit. "Neural networks for optimization". HKBU Institutional Repository, 2001. http://repository.hkbu.edu.hk/etd_ra/291.
Texto completo da fonteAhamed, Woakil Uddin. "Quantum recurrent neural networks for filtering". Thesis, University of Hull, 2009. http://hydra.hull.ac.uk/resources/hull:2411.
Texto completo da fonteWilliams, Bryn V. "Evolutionary neural networks : models and applications". Thesis, Aston University, 1995. http://publications.aston.ac.uk/10635/.
Texto completo da fonteDe, Jongh Albert. "Neural network ensembles". Thesis, Stellenbosch : Stellenbosch University, 2004. http://hdl.handle.net/10019.1/50035.
Texto completo da fonteENGLISH ABSTRACT: It is possible to improve on the accuracy of a single neural network by using an ensemble of diverse and accurate networks. This thesis explores diversity in ensembles and looks at the underlying theory and mechanisms employed to generate and combine ensemble members. Bagging and boosting are studied in detail and I explain their success in terms of well-known theoretical instruments. An empirical evaluation of their performance is conducted and I compare them to a single classifier and to each other in terms of accuracy and diversity.
AFRIKAANSE OPSOMMING: Dit is moontlik om op die akkuraatheid van 'n enkele neurale netwerk te verbeter deur 'n ensemble van diverse en akkurate netwerke te gebruik. Hierdie tesis ondersoek diversiteit in ensembles, asook die meganismes waardeur lede van 'n ensemble geskep en gekombineer kan word. Die algoritmes "bagging" en "boosting" word in diepte bestudeer en hulle sukses word aan die hand van bekende teoretiese instrumente verduidelik. Die prestasie van hierdie twee algoritmes word eksperimenteel gemeet en hulle akkuraatheid en diversiteit word met 'n enkele netwerk vergelyk.
Lee, Ji Young Ph D. Massachusetts Institute of Technology. "Information extraction with neural networks". Thesis, Massachusetts Institute of Technology, 2017. http://hdl.handle.net/1721.1/111905.
Texto completo da fonteCataloged from PDF version of thesis.
Includes bibliographical references (pages 85-97).
Electronic health records (EHRs) have been widely adopted, and are a gold mine for clinical research. However, EHRs, especially their text components, remain largely unexplored due to the fact that they must be de-identified prior to any medical investigation. Existing systems for de-identification rely on manual rules or features, which are time-consuming to develop and fine-tune for new datasets. In this thesis, we propose the first de-identification system based on artificial neural networks (ANNs), which achieves state-of-the-art results without any human-engineered features. The ANN architecture is extended to incorporate features, further improving the de-identification performance. Under practical considerations, we explore transfer learning to take advantage of large annotated dataset to improve the performance on datasets with limited number of annotations. The ANN-based system is publicly released as an easy-to-use software package for general purpose named-entity recognition as well as de-identification. Finally, we present an ANN architecture for relation extraction, which ranked first in the SemEval-2017 task 10 (ScienceIE) for relation extraction in scientific articles (subtask C).
by Ji Young Lee.
Ph. D.
Livros sobre o assunto "Neural networks (Computer science)"
Dominique, Valentin, e Edelman Betty, eds. Neural networks. Thousand Oaks, Calif: Sage Publications, 1999.
Encontre o texto completo da fonte1931-, Taylor John, e UNICOM Seminars, eds. Neural networks. Henley-on-Thames: A. Waller, 1995.
Encontre o texto completo da fonte1948-, Vandewalle J., e Roska T, eds. Cellular neural networks. Chichester [England]: Wiley, 1993.
Encontre o texto completo da fonteBischof, Horst. Pyramidal neural networks. Mahwah, NJ: Lawrence Erlbaum Associates, 1995.
Encontre o texto completo da fonteKwon, Seoyun J. Artificial neural networks. Hauppauge, N.Y: Nova Science Publishers, 2010.
Encontre o texto completo da fonteHoffmann, Norbert. Simulating neural networks. Wiesbaden: Vieweg, 1994.
Encontre o texto completo da fonteMaass, Wolfgang, 1949 Aug. 21- e Bishop Christopher M, eds. Pulsed neural networks. Cambridge, Mass: MIT Press, 1999.
Encontre o texto completo da fonteCaudill, Maureen. Understanding neural networks: Computer explorations. Cambridge, Mass: MIT Press, 1993.
Encontre o texto completo da fonteHu, Xiaolin, e P. Balasubramaniam. Recurrent neural networks. Rijek, Crotia: InTech, 2008.
Encontre o texto completo da fonteBaram, Yoram. Nested neural networks. Moffett Field, Calif: National Aeronautics and Space Administration, Ames Research Center, 1988.
Encontre o texto completo da fonteCapítulos de livros sobre o assunto "Neural networks (Computer science)"
ElAarag, Hala. "Neural Networks". In SpringerBriefs in Computer Science, 11–16. London: Springer London, 2012. http://dx.doi.org/10.1007/978-1-4471-4893-7_3.
Texto completo da fonteSiegelmann, Hava T. "Recurrent neural networks". In Computer Science Today, 29–45. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/bfb0015235.
Texto completo da fonteYan, Wei Qi. "Convolutional Neural Networks and Recurrent Neural Networks". In Texts in Computer Science, 69–124. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-4823-9_3.
Texto completo da fonteErtel, Wolfgang. "Neural Networks". In Undergraduate Topics in Computer Science, 221–56. London: Springer London, 2011. http://dx.doi.org/10.1007/978-0-85729-299-5_9.
Texto completo da fonteErtel, Wolfgang. "Neural Networks". In Undergraduate Topics in Computer Science, 245–87. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-58487-4_9.
Texto completo da fonteFeldman, Jerome A. "Neural Networks and Computer Science". In Opportunities and Constraints of Parallel Computing, 37–38. New York, NY: Springer US, 1989. http://dx.doi.org/10.1007/978-1-4613-9668-0_10.
Texto completo da fonteKruse, Rudolf, Christian Borgelt, Christian Braune, Sanaz Mostaghim e Matthias Steinbrecher. "General Neural Networks". In Texts in Computer Science, 37–46. London: Springer London, 2016. http://dx.doi.org/10.1007/978-1-4471-7296-3_4.
Texto completo da fonteKruse, Rudolf, Christian Borgelt, Frank Klawonn, Christian Moewes, Matthias Steinbrecher e Pascal Held. "General Neural Networks". In Texts in Computer Science, 37–46. London: Springer London, 2013. http://dx.doi.org/10.1007/978-1-4471-5013-8_4.
Texto completo da fonteKruse, Rudolf, Sanaz Mostaghim, Christian Borgelt, Christian Braune e Matthias Steinbrecher. "General Neural Networks". In Texts in Computer Science, 39–52. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-42227-1_4.
Texto completo da fonteBetti, Alessandro, Marco Gori e Stefano Melacci. "Foveated Neural Networks". In SpringerBriefs in Computer Science, 63–72. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-90987-1_4.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Neural networks (Computer science)"
Doncow, Sergey, Leonid Orbachevskyi, Valentin Birukow e Nina V. Stepanova. "Artificial Kohonen's neural networks for computer capillarometry". In Optical Information Science and Technology, editado por Andrei L. Mikaelian. SPIE, 1998. http://dx.doi.org/10.1117/12.304962.
Texto completo da fonteNowak, Jakub, Marcin Korytkowski e Rafał Scherer. "Classification of Computer Network Users with Convolutional Neural Networks". In 2018 Federated Conference on Computer Science and Information Systems. IEEE, 2018. http://dx.doi.org/10.15439/2018f321.
Texto completo da fonteShastri, Bhavin J., Volker Sorger e Nir Rotenberg. "In situ Training of Silicon Photonic Neural Networks: from Classical to Quantum". In CLEO: Science and Innovations. Washington, D.C.: Optica Publishing Group, 2023. http://dx.doi.org/10.1364/cleo_si.2023.sm4j.1.
Texto completo da fonteDias, L. P., J. J. F. Cerqueira, K. D. R. Assis e R. C. Almeida. "Using artificial neural network in intrusion detection systems to computer networks". In 2017 9th Computer Science and Electronic Engineering (CEEC). IEEE, 2017. http://dx.doi.org/10.1109/ceec.2017.8101615.
Texto completo da fonteAraújo, Georger, e Célia Ralha. "Computer Forensic Document Clustering with ART1 Neural Networks". In The Sixth International Conference on Forensic Computer Science. ABEAT, 2011. http://dx.doi.org/10.5769/c2011011.
Texto completo da fonteWang, Huiran, e Ruifang Ma. "Optimization of Neural Networks for Network Intrusion Detection". In 2009 First International Workshop on Education Technology and Computer Science. IEEE, 2009. http://dx.doi.org/10.1109/etcs.2009.102.
Texto completo da fonteEilermann, Sebastian, Christoph Petroll, Philipp Hoefer e Oliver Niggemann. "3D Multi-Criteria Design Generation and Optimization of an Engine Mount for an Unmanned Air Vehicle Using a Conditional Variational Autoencoder". In Computer Science Research Notes. University of West Bohemia, Czech Republic, 2024. http://dx.doi.org/10.24132/csrn.3401.22.
Texto completo da fonteSakas, D. P., D. S. Vlachos, T. E. Simos, Theodore E. Simos e George Psihoyios. "Fuzzy Neural Networks for Decision Support in Negotiation". In INTERNATIONAL ELECTRONIC CONFERENCE ON COMPUTER SCIENCE. AIP, 2008. http://dx.doi.org/10.1063/1.3037115.
Texto completo da fonte"Speech Emotion Recognition using Convolutional Neural Networks and Recurrent Neural Networks with Attention Model". In 2019 the 9th International Workshop on Computer Science and Engineering. WCSE, 2019. http://dx.doi.org/10.18178/wcse.2019.06.044.
Texto completo da fonteČajić, Elvir, Irma Ibrišimović, Alma Šehanović, Damir Bajrić e Julija Ščekić. "Fuzzy Logic And Neural Networks For Disease Detection And Simulation In Matlab". In 9th International Conference on Computer Science, Engineering and Applications. Academy & Industry Research Collaboration Center, 2023. http://dx.doi.org/10.5121/csit.2023.132302.
Texto completo da fonteRelatórios de organizações sobre o assunto "Neural networks (Computer science)"
Markova, Oksana, Serhiy Semerikov e Maiia Popel. СoCalc as a Learning Tool for Neural Network Simulation in the Special Course “Foundations of Mathematic Informatics”. Sun SITE Central Europe, maio de 2018. http://dx.doi.org/10.31812/0564/2250.
Texto completo da fonteSemerikov, Serhiy, Illia Teplytskyi, Yuliia Yechkalo, Oksana Markova, Vladimir Soloviev e Arnold Kiv. Computer Simulation of Neural Networks Using Spreadsheets: Dr. Anderson, Welcome Back. [б. в.], junho de 2019. http://dx.doi.org/10.31812/123456789/3178.
Texto completo da fonteGrossberg, Stephen. Instrumentation for Scientific Computing in Neural Networks, Information Science, Artificial Intelligence, and Applied Mathematics. Fort Belvoir, VA: Defense Technical Information Center, outubro de 1987. http://dx.doi.org/10.21236/ada189981.
Texto completo da fonteSemerikov, Serhiy O., Illia O. Teplytskyi, Yuliia V. Yechkalo e Arnold E. Kiv. Computer Simulation of Neural Networks Using Spreadsheets: The Dawn of the Age of Camelot. [б. в.], novembro de 2018. http://dx.doi.org/10.31812/123456789/2648.
Texto completo da fonteFarhi, Edward, e Hartmut Neven. Classification with Quantum Neural Networks on Near Term Processors. Web of Open Science, dezembro de 2020. http://dx.doi.org/10.37686/qrl.v1i2.80.
Texto completo da fonteWillson. L51756 State of the Art Intelligent Control for Large Engines. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), setembro de 1996. http://dx.doi.org/10.55274/r0010423.
Texto completo da fonteModlo, Yevhenii O., Serhiy O. Semerikov, Ruslan P. Shajda, Stanislav T. Tolmachev e Oksana M. Markova. Methods of using mobile Internet devices in the formation of the general professional component of bachelor in electromechanics competency in modeling of technical objects. [б. в.], julho de 2020. http://dx.doi.org/10.31812/123456789/3878.
Texto completo da fonteSAINI, RAVINDER, AbdulKhaliq Alshadid e Lujain Aldosari. Investigation on the application of artificial intelligence in prosthodontics. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, dezembro de 2022. http://dx.doi.org/10.37766/inplasy2022.12.0096.
Texto completo da fonteJohansen, Richard, Alan Katzenmeyer, Kaytee Pokrzywinski e Molly Reif. A review of sensor-based approaches for monitoring rapid response treatments of cyanoHABs. Engineer Research and Development Center (U.S.), julho de 2023. http://dx.doi.org/10.21079/11681/47261.
Texto completo da fonteSeginer, Ido, James Jones, Per-Olof Gutman e Eduardo Vallejos. Optimal Environmental Control for Indeterminate Greenhouse Crops. United States Department of Agriculture, agosto de 1997. http://dx.doi.org/10.32747/1997.7613034.bard.
Texto completo da fonte