Artigos de revistas sobre o tema "Networks anomalies detection"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Networks anomalies detection".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Mažeika, Dalius, e Saulius Jasonis. "NETWORK TRAFFIC ANOMALIES DETECTING USING MAXIMUM ENTROPY METHOD / KOMPIUTERIŲ TINKLO SRAUTO ANOMALIJŲ ATPAŽINIMAS MAKSIMALIOS ENTROPIJOS METODU". Mokslas – Lietuvos ateitis 6, n.º 2 (24 de abril de 2014): 162–67. http://dx.doi.org/10.3846/mla.2014.22.
Texto completo da fonteRačys, Donatas, e Dalius Mažeika. "NETWORK TRAFFIC ANOMALIES IDENTIFICATION BASED ON CLASSIFICATION METHODS / TINKLO SRAUTO ANOMALIJŲ IDENTIFIKAVIMAS, TAIKANT KLASIFIKAVIMO METODUS". Mokslas – Lietuvos ateitis 7, n.º 3 (13 de julho de 2015): 340–44. http://dx.doi.org/10.3846/mla.2015.796.
Texto completo da fonteRejito, Juli, Deris Stiawan, Ahmed Alshaflut e Rahmat Budiarto. "Machine learning-based anomaly detection for smart home networks under adversarial attack". Computer Science and Information Technologies 5, n.º 2 (1 de julho de 2024): 122–29. http://dx.doi.org/10.11591/csit.v5i2.p122-129.
Texto completo da fonteRejito, Juli, Deris Stiawan, Ahmed Alshaflut e Rahmat Budiarto. "Machine learning-based anomaly detection for smart home networks under adversarial attack". Computer Science and Information Technologies 5, n.º 2 (1 de julho de 2024): 122–29. http://dx.doi.org/10.11591/csit.v5i2.pp122-129.
Texto completo da fonteLiao, Xiao Ju, Yi Wang e Hai Lu. "Rule Anomalies Detection in Firewalls". Key Engineering Materials 474-476 (abril de 2011): 822–27. http://dx.doi.org/10.4028/www.scientific.net/kem.474-476.822.
Texto completo da fonteGutiérrez-Gómez, Leonardo, Alexandre Bovet e Jean-Charles Delvenne. "Multi-Scale Anomaly Detection on Attributed Networks". Proceedings of the AAAI Conference on Artificial Intelligence 34, n.º 01 (3 de abril de 2020): 678–85. http://dx.doi.org/10.1609/aaai.v34i01.5409.
Texto completo da fonteRana, Samir. "Anomaly Detection in Network Traffic using Machine Learning and Deep Learning Techniques". Turkish Journal of Computer and Mathematics Education (TURCOMAT) 10, n.º 2 (10 de setembro de 2019): 1063–67. http://dx.doi.org/10.17762/turcomat.v10i2.13626.
Texto completo da fonteJiang, Ding De, Cheng Yao, Zheng Zheng Xu, Peng Zhang, Zhen Yuan e Wen Da Qin. "An Continuous Wavelet Transform-Based Detection Approach to Traffic Anomalies". Applied Mechanics and Materials 130-134 (outubro de 2011): 2098–102. http://dx.doi.org/10.4028/www.scientific.net/amm.130-134.2098.
Texto completo da fonteA, Nandini. "Anomaly Detection Using CNN with I3D Feature Extraction". INTERANTIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT 08, n.º 03 (18 de março de 2024): 1–5. http://dx.doi.org/10.55041/ijsrem29371.
Texto completo da fonteBadr, Malek, Shaha Al-Otaibi, Nazik Alturki e Tanvir Abir. "Deep Learning-Based Networks for Detecting Anomalies in Chest X-Rays". BioMed Research International 2022 (23 de julho de 2022): 1–10. http://dx.doi.org/10.1155/2022/7833516.
Texto completo da fonteSozol, Md Shariar, Golam Mostafa Saki e Md Mostafizur Rahman. "Anomaly Detection in Cybersecurity with Graph-Based Approaches". INTERANTIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT 08, n.º 008 (13 de agosto de 2024): 1–5. http://dx.doi.org/10.55041/ijsrem37061.
Texto completo da fonteDehbozorgi, Leila, Reza Akbari-Hasanjani e Reza Sabbaghi-Nadooshan. "Chaotic seismic signal modeling based on noise and earthquake anomaly detection". Facta universitatis - series: Electronics and Energetics 35, n.º 4 (2022): 603–17. http://dx.doi.org/10.2298/fuee2204603d.
Texto completo da fonteKotenko, Igor, Igor Saenko, Oleg Lauta e Alexander Kriebel. "Anomaly and Cyber Attack Detection Technique Based on the Integration of Fractal Analysis and Machine Learning Methods". Informatics and Automation 21, n.º 6 (24 de novembro de 2022): 1328–58. http://dx.doi.org/10.15622/ia.21.6.9.
Texto completo da fontePEROV, ROMAN A., OLEG S. LAUTA, ALEXANDER M. KRIBEL e YURI V. FEDULOV. "A METHOD FOR DETECTING ANOMALIES IN NETWORK TRAFFIC". H&ES Research 14, n.º 3 (2022): 25–31. http://dx.doi.org/10.36724/2409-5419-2022-14-3-25-31.
Texto completo da fonteBarrionuevo, Mercedes, Mariela Lopresti, Natalia Miranda e Fabiana Piccoli. "Secure Computer Network: Strategies and Challengers in Big Data Era". Journal of Computer Science and Technology 18, n.º 03 (12 de dezembro de 2018): e28. http://dx.doi.org/10.24215/16666038.18.e28.
Texto completo da fonteYallamanda Rajesh Babu, Et al. "Subgraph Anomaly Detection in Social Networks using Clustering-Based Deep Autoencoders". International Journal on Recent and Innovation Trends in Computing and Communication 11, n.º 9 (5 de novembro de 2023): 1646–55. http://dx.doi.org/10.17762/ijritcc.v11i9.9150.
Texto completo da fonteRizwan, Ramsha, Farrukh Aslam Khan, Haider Abbas e Sajjad Hussain Chauhdary. "Anomaly Detection in Wireless Sensor Networks Using Immune-Based Bioinspired Mechanism". International Journal of Distributed Sensor Networks 2015 (2015): 1–10. http://dx.doi.org/10.1155/2015/684952.
Texto completo da fonteBurgueño, Jesús, Isabel de-la-Bandera, Jessica Mendoza, David Palacios, Cesar Morillas e Raquel Barco. "Online Anomaly Detection System for Mobile Networks". Sensors 20, n.º 24 (17 de dezembro de 2020): 7232. http://dx.doi.org/10.3390/s20247232.
Texto completo da fonteMa, Shu Hua, Jin Kuan Wang, Zhi Gang Liu e Hou Yan Jiang. "Density-Based Distributed Elliptical Anomaly Detection in Wireless Sensor Networks". Applied Mechanics and Materials 249-250 (dezembro de 2012): 226–30. http://dx.doi.org/10.4028/www.scientific.net/amm.249-250.226.
Texto completo da fonteLegashev, Leonid, Irina Bolodurina, Lubov Zabrodina, Yuri Ushakov, Alexander Shukhman, Denis Parfenov, Yong Zhou e Yan Xu. "Message Authentication and Network Anomalies Detection in Vehicular Ad Hoc Networks". Security and Communication Networks 2022 (24 de fevereiro de 2022): 1–18. http://dx.doi.org/10.1155/2022/9440886.
Texto completo da fonteMillán-Roures, Laura, Irene Epifanio e Vicente Martínez. "Detection of Anomalies in Water Networks by Functional Data Analysis". Mathematical Problems in Engineering 2018 (21 de junho de 2018): 1–13. http://dx.doi.org/10.1155/2018/5129735.
Texto completo da fonteBattini Sujatha, Et al. "An Efficient Fuzzy Based Multi Level Clustering Model Using Artificial Bee Colony For Intrusion Detection". International Journal on Recent and Innovation Trends in Computing and Communication 11, n.º 11 (30 de novembro de 2023): 264–73. http://dx.doi.org/10.17762/ijritcc.v11i11.9390.
Texto completo da fonteAlfardus, Asma, e Danda B. Rawat. "Machine Learning-Based Anomaly Detection for Securing In-Vehicle Networks". Electronics 13, n.º 10 (16 de maio de 2024): 1962. http://dx.doi.org/10.3390/electronics13101962.
Texto completo da fonteŽarković, Mileta, e Goran Dobrić. "Artificial Intelligence for Energy Theft Detection in Distribution Networks". Energies 17, n.º 7 (26 de março de 2024): 1580. http://dx.doi.org/10.3390/en17071580.
Texto completo da fonteRovatsos, Georgios, George V. Moustakides e Venugopal V. Veeravalli. "Quickest Detection of Moving Anomalies in Sensor Networks". IEEE Journal on Selected Areas in Information Theory 2, n.º 2 (junho de 2021): 762–73. http://dx.doi.org/10.1109/jsait.2021.3076043.
Texto completo da fonteTian, Hui, Jingtian Liu e Meimei Ding. "Promising techniques for anomaly detection on network traffic". Computer Science and Information Systems 14, n.º 3 (2017): 597–609. http://dx.doi.org/10.2298/csis170201018h.
Texto completo da fonteGarcía González, Gastón, Pedro Casas, Alicia Fernández e Gabriel Gómez. "On the Usage of Generative Models for Network Anomaly Detection in Multivariate Time-Series". ACM SIGMETRICS Performance Evaluation Review 48, n.º 4 (17 de maio de 2021): 49–52. http://dx.doi.org/10.1145/3466826.3466843.
Texto completo da fonteYan Lei. "Smart Network Forensics with Generative Adversarial Networks Leveraging Blockchain for Anomaly Detection and Immutable Audit Trails". Power System Technology 48, n.º 1 (28 de maio de 2024): 1625–42. http://dx.doi.org/10.52783/pst.432.
Texto completo da fonteKuang, Ye, Dandan Li, Xiaohong Huang e Mo Zhou. "On the Modeling of RTT Time Series for Network Anomaly Detection". Security and Communication Networks 2022 (6 de maio de 2022): 1–13. http://dx.doi.org/10.1155/2022/5499080.
Texto completo da fonteHajirahimova, Makrufa, e Leyla Yusifova. "Experimental Study of Machine Learning Methods in Anomaly Detection". Problems of Information Technology 13, n.º 1 (24 de janeiro de 2022): 9–19. http://dx.doi.org/10.25045/jpit.v13.i1.02.
Texto completo da fonteZehra, Sehar, Ummay Faseeha, Hassan Jamil Syed, Fahad Samad, Ashraf Osman Ibrahim, Anas W. Abulfaraj e Wamda Nagmeldin. "Machine Learning-Based Anomaly Detection in NFV: A Comprehensive Survey". Sensors 23, n.º 11 (5 de junho de 2023): 5340. http://dx.doi.org/10.3390/s23115340.
Texto completo da fonteRadivilova, Tamara, Lyudmyla Kirichenko, Maksym Tawalbeh e Andrii Ilkov. "DETECTION OF ANOMALIES IN THE TELECOMMUNICATIONS TRAFFIC BY STATISTICAL METHODS". Cybersecurity: Education, Science, Technique 11, n.º 3 (2021): 183–94. http://dx.doi.org/10.28925/2663-4023.2021.11.183194.
Texto completo da fonteSousa, Inês Sousa, António Casimiro e José Cecílio. "Artificial Neural Networks for Real-Time Data Quality Assurance". ACM SIGAda Ada Letters 42, n.º 1 (15 de dezembro de 2022): 86–89. http://dx.doi.org/10.1145/3577949.3577966.
Texto completo da fonteKomadina, Adrian, Ivan Kovačević, Bruno Štengl e Stjepan Groš. "Comparative Analysis of Anomaly Detection Approaches in Firewall Logs: Integrating Light-Weight Synthesis of Security Logs and Artificially Generated Attack Detection". Sensors 24, n.º 8 (20 de abril de 2024): 2636. http://dx.doi.org/10.3390/s24082636.
Texto completo da fonteRajaboevich, Gulomov Sherzod, e Ganiev Abdukhalil Abdujalilovich. "Methods and models of protecting computer networks from un-wanted network traffic". International Journal of Engineering & Technology 7, n.º 4 (24 de setembro de 2018): 2541. http://dx.doi.org/10.14419/ijet.v7i4.14744.
Texto completo da fonteDymora, Paweł, e Mirosław Mazurek. "Anomaly Detection in IoT Communication Network Based on Spectral Analysis and Hurst Exponent". Applied Sciences 9, n.º 24 (6 de dezembro de 2019): 5319. http://dx.doi.org/10.3390/app9245319.
Texto completo da fonteMandrikova, O. V. "Intelligent methods for natural data analysis: application to space weather". Computer Optics 48, n.º 1 (fevereiro de 2024): 139–48. http://dx.doi.org/10.18287/2412-6179-co-1367.
Texto completo da fonteHabeeb, Mohammed Sayeeduddin, e Tummala Ranga Babu. "MS-CFFS: Multistage Coarse and Fine Feature Selecton for Advanced Anomaly Detection in IoT Security Networks". International Journal of Electrical and Electronics Research 12, n.º 3 (25 de julho de 2024): 780–90. http://dx.doi.org/10.37391/ijeer.120308.
Texto completo da fonteLópez-Vizcaíno, Manuel, Carlos Dafonte, Francisco Nóvoa, Daniel Garabato e M. Álvarez. "Network Data Unsupervised Clustering to Anomaly Detection". Proceedings 2, n.º 18 (17 de setembro de 2018): 1173. http://dx.doi.org/10.3390/proceedings2181173.
Texto completo da fonteMeneganti, M., F. S. Saviello e R. Tagliaferri. "Fuzzy neural networks for classification and detection of anomalies". IEEE Transactions on Neural Networks 9, n.º 5 (1998): 848–61. http://dx.doi.org/10.1109/72.712157.
Texto completo da fonteP, Bharathisindhu, e Dr S.SelvaBrunda. "Probability Model for Intrusion Detection System in Mobile Adhoc Network". International Journal of Engineering & Technology 7, n.º 2.20 (18 de abril de 2018): 302. http://dx.doi.org/10.14419/ijet.v7i2.20.16722.
Texto completo da fonte.., Pallavi, e Sarika Chaudhary. "Maximizing Anomaly Detection Performance in Next-Generation Networks". Journal of Cybersecurity and Information Management 12, n.º 2 (2023): 36–51. http://dx.doi.org/10.54216/jcim.120203.
Texto completo da fonteSun, Yumeng. "Unsupervised Wireless Network Model-Assisted Abnormal Warning Information in Government Management". Journal of Sensors 2021 (26 de outubro de 2021): 1–12. http://dx.doi.org/10.1155/2021/1614055.
Texto completo da fonteClausen, Henry, Gudmund Grov e David Aspinall. "CBAM: A Contextual Model for Network Anomaly Detection". Computers 10, n.º 6 (11 de junho de 2021): 79. http://dx.doi.org/10.3390/computers10060079.
Texto completo da fonteYu, Xiang, Hui Lu, Xianfei Yang, Ying Chen, Haifeng Song, Jianhua Li e Wei Shi. "An adaptive method based on contextual anomaly detection in Internet of Things through wireless sensor networks". International Journal of Distributed Sensor Networks 16, n.º 5 (maio de 2020): 155014772092047. http://dx.doi.org/10.1177/1550147720920478.
Texto completo da fonteMeleshko, Alexey, Anton Shulepov, Vasily Desnitsky e Evgenia Novikova. "Integrated approach to revelation of anomalies in wireless sensor networks for water control cases". Computer Tools in Education, n.º 1 (28 de março de 2021): 58–67. http://dx.doi.org/10.32603/2071-2340-2021-1-59-68.
Texto completo da fonteKhilar, Rashmita, K. Mariyappan, Mary Subaja Christo, J. Amutharaj, T. Anitha, T. Rajendran e Areda Batu. "Artificial Intelligence-Based Security Protocols to Resist Attacks in Internet of Things". Wireless Communications and Mobile Computing 2022 (5 de abril de 2022): 1–10. http://dx.doi.org/10.1155/2022/1440538.
Texto completo da fonteDymora, Paweł, e Mirosław Mazurek. "An Innovative Approach to Anomaly Detection in Communication Networks Using Multifractal Analysis". Applied Sciences 10, n.º 9 (8 de maio de 2020): 3277. http://dx.doi.org/10.3390/app10093277.
Texto completo da fontePatel, Darsh, Kathiravan Srinivasan, Chuan-Yu Chang, Takshi Gupta e Aman Kataria. "Network Anomaly Detection inside Consumer Networks—A Hybrid Approach". Electronics 9, n.º 6 (1 de junho de 2020): 923. http://dx.doi.org/10.3390/electronics9060923.
Texto completo da fonteImtiaz, Syed Ibrahim, Liaqat Ali Khan, Ahmad S. Almadhor, Sidra Abbas, Shtwai Alsubai, Michal Gregus e Zunera Jalil. "Efficient Approach for Anomaly Detection in Internet of Things Traffic Using Deep Learning". Wireless Communications and Mobile Computing 2022 (10 de setembro de 2022): 1–15. http://dx.doi.org/10.1155/2022/8266347.
Texto completo da fonte