Literatura científica selecionada sobre o tema "Network thermodynamics"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Network thermodynamics".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Network thermodynamics"
Wampler, Taylor, e Andre C. Barato. "Skewness and kurtosis in stochastic thermodynamics". Journal of Physics A: Mathematical and Theoretical 55, n.º 1 (9 de dezembro de 2021): 014002. http://dx.doi.org/10.1088/1751-8121/ac3b0c.
Texto completo da fonteTasnim, Farita, e David H. Wolpert. "Stochastic Thermodynamics of Multiple Co-Evolving Systems—Beyond Multipartite Processes". Entropy 25, n.º 7 (17 de julho de 2023): 1078. http://dx.doi.org/10.3390/e25071078.
Texto completo da fonteBorlenghi, Simone, e Anna Delin. "Stochastic Thermodynamics of Oscillators’ Networks". Entropy 20, n.º 12 (19 de dezembro de 2018): 992. http://dx.doi.org/10.3390/e20120992.
Texto completo da fonteLewis, Edwin R. "Network thermodynamics revisited". Biosystems 34, n.º 1-3 (1995): 47–63. http://dx.doi.org/10.1016/0303-2647(94)01456-h.
Texto completo da fonteŠesták, Jaroslav. "Studies in network thermodynamics". Thermochimica Acta 108 (novembro de 1986): 393. http://dx.doi.org/10.1016/0040-6031(86)85106-1.
Texto completo da fonteMatsoukas, Themis. "Thermodynamics Beyond Molecules: Statistical Thermodynamics of Probability Distributions". Entropy 21, n.º 9 (13 de setembro de 2019): 890. http://dx.doi.org/10.3390/e21090890.
Texto completo da fonteDu, Bin, Daniel C. Zielinski, Jonathan M. Monk e Bernhard O. Palsson. "Thermodynamic favorability and pathway yield as evolutionary tradeoffs in biosynthetic pathway choice". Proceedings of the National Academy of Sciences 115, n.º 44 (11 de outubro de 2018): 11339–44. http://dx.doi.org/10.1073/pnas.1805367115.
Texto completo da fonteReichl, L. E. "Book review:Studies in network thermodynamics". Journal of Statistical Physics 50, n.º 1-2 (janeiro de 1988): 465. http://dx.doi.org/10.1007/bf01023005.
Texto completo da fonteZhang, Mingjin, Peng Zhang, Yuhan Zhang, Minghai Yang, Xiaofeng Li, Xiaogang Dong e Luchang Yang. "SAR-to-Optical Image Translation via an Interpretable Network". Remote Sensing 16, n.º 2 (8 de janeiro de 2024): 242. http://dx.doi.org/10.3390/rs16020242.
Texto completo da fonteKeegan, Michael, Hava T. Siegelmann, Edward A. Rietman, Giannoula Lakka Klement e Jack A. Tuszynski. "Gibbs Free Energy, a Thermodynamic Measure of Protein–Protein Interactions, Correlates with Neurologic Disability". BioMedInformatics 1, n.º 3 (14 de dezembro de 2021): 201–10. http://dx.doi.org/10.3390/biomedinformatics1030013.
Texto completo da fonteTeses / dissertações sobre o assunto "Network thermodynamics"
Squadrani, Lorenzo. "Deep neural networks and thermodynamics". Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2020.
Encontre o texto completo da fontePierantozzi, Mariano. "Mathematical modeling for Thermodynamics: Thermophysical Properties and Equation of State". Doctoral thesis, Università Politecnica delle Marche, 2015. http://hdl.handle.net/11566/242931.
Texto completo da fonteAbstract In the modern multicultural and multidisciplinary society, always adopting more and more wider prospective than before. In this thesis, we try to adopt a multidisciplinary method, which involves Mathematics, Physics, but also Chemistry, Statistics, and in general the scientific engineering. The aspects explained are thermo physical properties, and Equations of State (EOS) of gases. Regarding thermo physical properties have been analysed Surface Tension, Thermal Conductivity, Viscosity, and the second virial coefficient. On this arguments, the work had been subdivided between the gathering of experimental data, the analysing of data with statistical techniques transforming them to more reliable data than row. The second step was to collect the equations of literature. Then we went ahead studying the sensibility of data to find out which physical properties could have bigger impact to property examined. At the end, we looked for an equation that could represent experimental data in a better way. We always preferred the scaled equations that respect chemical and physical aspects, to the empirical ones. Comparing our results with better equations in literature, our results are always better, in fact all of the have been published in the best international journals on this subject. A separate discussion is that of EOS. Analyzing the previous literature, the first thing that came to our minds was that to find the best possible equation is impossible. Or as Martin wrote copying words of the famous fables Snow White: “Mirror mirror on the wall, who is the fairest of them all?”. We choose to modify The Carnahan-Starling-De Santis (CSD) equation of state, a parametrich equation with good results in the calculation of Vapor Liquid Equilibrium. Due to multi objective minimization techniques the performance of CSD has been improved. These are the principals aspect brought to light in this research, which apart from the results, with good results has opened to me the world of research.
Ozaki, Hiroto. "Study of Network Structures and Rheological Properties of Physical Gels". Kyoto University, 2017. http://hdl.handle.net/2433/227633.
Texto completo da fonteLoutchko, Dimitri. "A Theoretical Study of the Tryptophan Synthase Enzyme Reaction Network". Doctoral thesis, Humboldt-Universität zu Berlin, 2018. http://dx.doi.org/10.18452/19384.
Texto completo da fonteThe channeling enzyme tryptophan synthase provides a paradigmatic example of a chemical nanomachine with two distinct catalytic subunits. It catalyzes the biosynthesis of tryptophan, whereby the catalytic activity in a subunit is enhanced or inhibited depending on the state of the other subunit, gates control the accessibility of the reactive sites and the intermediate product indole is directly channeled within the protein. The first single-molecule kinetic model of the enzyme is constructed. Simulations reveal strong correlations in the states of the active centers and the emergent synchronization. Thermodynamic data is used to calculate the rate constant for the reverse indole channeling. Using the fully reversible single-molecule model, the stochastic thermodynamics of the enzyme is closely examined. The current methods describing information exchange in bipartite systems are extended to arbitrary Markov networks and applied to the kinetic model. They allow the characterization of the information exchange between the subunits resulting from allosteric cross-regulations and channeling. The final part of this work is focused on chemical reaction networks of metabolites and enzymes. Algebraic semigroup models are constructed based on a formalism that emphasizes the catalytic function of reactants within the network. A correspondence between coarse-graining procedures and semigroup congruences respecting the functional structure is established. A family of congruences that leads to a rather unusual coarse-graining is analyzed: The network is covered with local patches in a way that the local information on the network is fully retained, but the environment of each patch is not resolved. Whereas classical coarse-graining procedures would fix a particular patch and delete information about the environment, the algebraic approach keeps the structure of all local patches and allows the interaction of functions within distinct patches.
Hui, Qing. "Nonlinear dynamical systems and control for large-scale, hybrid, and network systems". Diss., Atlanta, Ga. : Georgia Institute of Technology, 2008. http://hdl.handle.net/1853/24635.
Texto completo da fonteCommittee Chair: Haddad, Wassim; Committee Member: Feron, Eric; Committee Member: JVR, Prasad; Committee Member: Taylor, David; Committee Member: Tsiotras, Panagiotis
Grondin, Yohann. "Biological networks : a thermodynamical approach". Thesis, University of Leicester, 2006. http://hdl.handle.net/2381/30584.
Texto completo da fonteKotjabasakis, E. "Design of flexible heat exchanger networks". Thesis, University of Manchester, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.235140.
Texto completo da fonteGarcia, Cantu Ros Anselmo. "Thermodynamic and kinetic aspects of interaction networks". Doctoral thesis, Universite Libre de Bruxelles, 2007. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/210420.
Texto completo da fonte
Doctorat en Sciences
info:eu-repo/semantics/nonPublished
Honorato-Zimmer, Ricardo. "On a thermodynamic approach to biomolecular interaction networks". Thesis, University of Edinburgh, 2017. http://hdl.handle.net/1842/28904.
Texto completo da fonteJones, Paul Simon. "Targeting and design for heat exchanger networks under multiple base case operation". Thesis, University of Manchester, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.292518.
Texto completo da fonteLivros sobre o assunto "Network thermodynamics"
Peusner, Leonardo. Studies in network thermodynamics. Amsterdam: Elsevier, 1986.
Encontre o texto completo da fonteGermany) Minisymposium on Thermodynamics of Surfaces (1995 Berlin. Thermodynamics of surfaces: Minisymposium, May 11-13, 1995 : European Thermodynamics Network, thermodynamics of complex systems. Berlin: Technische Universität Berlin, 1996.
Encontre o texto completo da fontePeusner, L. The principles of network thermodynamics: Theory and biophysical applications. Lincoln, Mass: Entropy Ltd., 1987.
Encontre o texto completo da fontePiotrowska, Ewa. Zastępcza sieć cieplna wymiennika ciepła pracującego w stanach przejściowych: The equivalent thermal network for heat exchanger working in the transient states. Warszawa: Wydawnictwo SGGW, 2013.
Encontre o texto completo da fonteMeeting, American Society of Mechanical Engineers Winter. Network thermodynamics, heat and mass transfer in biotechnology: Presented at the Winter Annual Meeting of the American Society of Mechanical Engineers, Boston, Massachusetts, December 13-18, 1987 : sponsored by the Bioengineering Division, ASME, the Heat Transfer Division, ASME. New York: American Society of Mechanical Engineers, 1987.
Encontre o texto completo da fonteAmerican Society of Mechanical Engineers. Winter Meeting. Network thermodynamics, heat and mass transfer in biotechnology: Presented at the Winter Annual Meeting of the American Society of Mechanical Engineers, Boston, Massachusetts, December 13-18, 1987. New York, N.Y. (345 E. 47th St., New York 10017): ASME, 1987.
Encontre o texto completo da fonteBejan, Adrian, e Giuseppe Grazzini, eds. Shape and Thermodynamics. Florence: Firenze University Press, 2008. http://dx.doi.org/10.36253/978-88-8453-836-9.
Texto completo da fonteIto, Sosuke. Information Thermodynamics on Causal Networks and its Application to Biochemical Signal Transduction. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-1664-6.
Texto completo da fonteMüller, Berndt. Neural networks: An introduction. 2a ed. Berlin: Springer-Verlag, 1991.
Encontre o texto completo da fonteMüller, Berndt. Neural networks: An introduction. 2a ed. Berlin: Springer, 1995.
Encontre o texto completo da fonteCapítulos de livros sobre o assunto "Network thermodynamics"
Imai, Y. "Graded Modelling of Exocrine Secretion Using Network Thermodynamics". In Epithelial Secretion of Water and Electrolytes, 129–39. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-75033-5_9.
Texto completo da fonteGordon, Manfred. "Thermodynamics of Casein Gels and the Universality of Network Theories". In Integration of Fundamental Polymer Science and Technology, 167–76. Dordrecht: Springer Netherlands, 1986. http://dx.doi.org/10.1007/978-94-009-4185-4_22.
Texto completo da fonteHaddad, Wassim M. "The Role of Systems Biology, Neuroscience, and Thermodynamics in Network Control and Learning". In Handbook of Reinforcement Learning and Control, 763–817. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-60990-0_25.
Texto completo da fonteDoty, David, Trent A. Rogers, David Soloveichik, Chris Thachuk e Damien Woods. "Thermodynamic Binding Networks". In Lecture Notes in Computer Science, 249–66. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-66799-7_16.
Texto completo da fonteFeinberg, Martin. "Quasi-Thermodynamic Kinetic Systems". In Foundations of Chemical Reaction Network Theory, 273–91. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-03858-8_13.
Texto completo da fonteUtracki, L. A. "Thermodynamics and Kinetics of Phase Separation". In Interpenetrating Polymer Networks, 77–123. Washington, DC: American Chemical Society, 1994. http://dx.doi.org/10.1021/ba-1994-0239.ch003.
Texto completo da fonteIto, Sosuke. "Information Thermodynamics on Causal Networks". In Information Thermodynamics on Causal Networks and its Application to Biochemical Signal Transduction, 61–82. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-1664-6_6.
Texto completo da fonteRostiashvili, V. G., e T. A. Vilgis. "Statistical Thermodynamics of Polymeric Networks". In Encyclopedia of Polymeric Nanomaterials, 1–18. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-36199-9_308-1.
Texto completo da fonteRostiashvili, V. G., e T. A. Vilgis. "Statistical Thermodynamics of Polymeric Networks". In Encyclopedia of Polymeric Nanomaterials, 2254–68. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-642-29648-2_308.
Texto completo da fonteYe, Cheng, Andrea Torsello, Richard C. Wilson e Edwin R. Hancock. "Thermodynamics of Time Evolving Networks". In Graph-Based Representations in Pattern Recognition, 315–24. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-18224-7_31.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Network thermodynamics"
Pavlović, Marina Simović, Maja Pagnacco, Bojana Bokić, Darko Vasiljević, Marija Radmilović-Rađenović, Branislav Rađenović e Branko Kolarić. "Breaking Barriers: Molding Thermodynamics by Geometry of Nanostructures". In 2024 24th International Conference on Transparent Optical Networks (ICTON), 1–4. IEEE, 2024. http://dx.doi.org/10.1109/icton62926.2024.10648049.
Texto completo da fonteZitelli, Mario. "A Thermodynamic Study of Low-power Modal Multiplexed Systems". In 2024 24th International Conference on Transparent Optical Networks (ICTON), 1–3. IEEE, 2024. http://dx.doi.org/10.1109/icton62926.2024.10647332.
Texto completo da fonteKiritsis, E., e T. Taylor. "Thermodynamics of D-brane probes". In European Network on Physics beyond the Standard Model. Trieste, Italy: Sissa Medialab, 1999. http://dx.doi.org/10.22323/1.002.0027.
Texto completo da fonteTaliaferro, Matthew E., e Samuel R. Darr. "Modeling Internal Launch Vehicle Fluid Flow and Thermodynamics, Part 1: Thermodynamic Tank Network Solver". In AIAA SCITECH 2024 Forum. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2024. http://dx.doi.org/10.2514/6.2024-2293.
Texto completo da fonteGaymann, Audrey, Giorgio Schiaffini, Michela Massini, Francesco Montomoli e Alessandro Corsini. "Neural network topology for wind turbine analysis". In European Conference on Turbomachinery Fluid Dynamics and Thermodynamics. European Turbomachinery Society, 2019. http://dx.doi.org/10.29008/etc2019-174.
Texto completo da fontePothineni, Dinesh, Pratik Mishra e Aadil Rasheed. "Social thermodynamics: Modelling communication dynamics in social network". In 2012 International Conference on Future Generation Communication Technology (FGCT). IEEE, 2012. http://dx.doi.org/10.1109/fgct.2012.6476582.
Texto completo da fonteBerg, Jordan M., D. H. S. Maithripala, Qing Hui e Wassim M. Haddad. "Thermodynamics-based network systems control by thermal analogy". In 2012 IEEE 51st Annual Conference on Decision and Control (CDC). IEEE, 2012. http://dx.doi.org/10.1109/cdc.2012.6426012.
Texto completo da fonteChen, Ruijun. "The Network Locating Principle in Flexible Circuit Board Assembly". In ASME 2009 International Mechanical Engineering Congress and Exposition. ASMEDC, 2009. http://dx.doi.org/10.1115/imece2009-10305.
Texto completo da fonteLayton, Astrid, John Reap e Bert Bras. "A Correlation Between Thermal Efficiency and Biological Network Cyclicity". In ASME 2011 5th International Conference on Energy Sustainability. ASMEDC, 2011. http://dx.doi.org/10.1115/es2011-54787.
Texto completo da fonteIwai, Takuya, Daichi Kominami, Masayuki Murata e Tetsuya Yomo. "Thermodynamics-Based Entropy Adjustment for Robust Self-Organized Network Controls". In 2014 IEEE 38th Annual Computer Software and Applications Conference (COMPSAC). IEEE, 2014. http://dx.doi.org/10.1109/compsac.2014.48.
Texto completo da fonteRelatórios de organizações sobre o assunto "Network thermodynamics"
Haddad, Wassim M. Complexity, Robustness, and Network Thermodynamics in Large-Scale and Multiagent Systems: A Hybrid Control Approach. Fort Belvoir, VA: Defense Technical Information Center, janeiro de 2012. http://dx.doi.org/10.21236/ada565203.
Texto completo da fonteTse, David, Piyush Gupta e Devavrat Shah. Thermodynamics of Large-Scale Heterogeneous Wireless Networks. Fort Belvoir, VA: Defense Technical Information Center, março de 2014. http://dx.doi.org/10.21236/ada601231.
Texto completo da fonteSteele, W. V., R. D. Chirico, S. E. Knipmeyer e A. Nguyen. The thermodynamic properties of 2-aminobiphenyl (an intermediate in the carbazole/hydrogen reaction network). Office of Scientific and Technical Information (OSTI), dezembro de 1990. http://dx.doi.org/10.2172/6307021.
Texto completo da fonteHaddad, Wassim M., e Quirino Balzano. A Network Thermodynamic Framework for the Analysis and Control Design of Large-Scale Dynamical Systems. Fort Belvoir, VA: Defense Technical Information Center, março de 2006. http://dx.doi.org/10.21236/ada448643.
Texto completo da fontePerdigão, Rui A. P. Strengthening Multi-Hazard Resilience with Quantum Aerospace Systems Intelligence. Synergistic Manifolds, janeiro de 2024. http://dx.doi.org/10.46337/240301.
Texto completo da fonteMcKinley, James P., e Jonathan Istok. Stability of U(VI) and Tc(VII) Reducing Microbial Communities to Environmental Perturbation: Development and Testing of a Thermodynamic Network Model. Office of Scientific and Technical Information (OSTI), junho de 2005. http://dx.doi.org/10.2172/893451.
Texto completo da fonteMcKinley, James P., Chongxuan Liu, Jack Istok e Lee Krumholz. Stability of U(VI)- and Tc(VII) reducing microbial communities to environmental perturbation: a thermodynamic network model and intermediate-scale experiments. Office of Scientific and Technical Information (OSTI), junho de 2006. http://dx.doi.org/10.2172/895882.
Texto completo da fontePerdigão, Rui A. P. Neuro-Quantum Cyber-Physical Intelligence (NQCPI). Synergistic Manifolds, outubro de 2024. http://dx.doi.org/10.46337/241024.
Texto completo da fonte