Artigos de revistas sobre o tema "Network data representation"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Network data representation".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
R.Tamilarasu e G. Soundarya Devi. "Improvising Connection In 5g By Means Of Particle Swarm Optimization Techniques". South Asian Journal of Engineering and Technology 14, n.º 2 (30 de abril de 2024): 1–6. http://dx.doi.org/10.26524/sajet.2023.14.2.
Texto completo da fonteYe, Zhonglin, Haixing Zhao, Ke Zhang, Yu Zhu e Zhaoyang Wang. "An Optimized Network Representation Learning Algorithm Using Multi-Relational Data". Mathematics 7, n.º 5 (21 de maio de 2019): 460. http://dx.doi.org/10.3390/math7050460.
Texto completo da fonteArmenta, Marco, e Pierre-Marc Jodoin. "The Representation Theory of Neural Networks". Mathematics 9, n.º 24 (13 de dezembro de 2021): 3216. http://dx.doi.org/10.3390/math9243216.
Texto completo da fonteAristizábal Q, Luz Angela, e Nicolás Toro G. "Multilayer Representation and Multiscale Analysis on Data Networks". International journal of Computer Networks & Communications 13, n.º 3 (31 de maio de 2021): 41–55. http://dx.doi.org/10.5121/ijcnc.2021.13303.
Texto completo da fonteNguyễn, Tuấn, Nguyen Hai Hao, Dang Le Dinh Trang, Nguyen Van Tuan e Cao Van Loi. "Robust anomaly detection methods for contamination network data". Journal of Military Science and Technology, n.º 79 (19 de maio de 2022): 41–51. http://dx.doi.org/10.54939/1859-1043.j.mst.79.2022.41-51.
Texto completo da fonteDu, Xin, Yulong Pei, Wouter Duivesteijn e Mykola Pechenizkiy. "Fairness in Network Representation by Latent Structural Heterogeneity in Observational Data". Proceedings of the AAAI Conference on Artificial Intelligence 34, n.º 04 (3 de abril de 2020): 3809–16. http://dx.doi.org/10.1609/aaai.v34i04.5792.
Texto completo da fonteDongming Chen, Dongming Chen, Mingshuo Nie Dongming Chen, Jiarui Yan Mingshuo Nie, Jiangnan Meng Jiarui Yan e Dongqi Wang Jiangnan Meng. "Network Representation Learning Algorithm Based on Community Folding". 網際網路技術學刊 23, n.º 2 (março de 2022): 415–23. http://dx.doi.org/10.53106/160792642022032302020.
Texto completo da fonteZhang, Xiaoxian, Jianpei Zhang e Jing Yang. "Large-scale dynamic social data representation for structure feature learning". Journal of Intelligent & Fuzzy Systems 39, n.º 4 (21 de outubro de 2020): 5253–62. http://dx.doi.org/10.3233/jifs-189010.
Texto completo da fonteKapoor, Maya, Michael Napolitano, Jonathan Quance, Thomas Moyer e Siddharth Krishnan. "Detecting VoIP Data Streams: Approaches Using Hidden Representation Learning". Proceedings of the AAAI Conference on Artificial Intelligence 37, n.º 13 (26 de junho de 2023): 15519–27. http://dx.doi.org/10.1609/aaai.v37i13.26840.
Texto completo da fonteGiannarakis, Nick, Alexandra Silva e David Walker. "ProbNV: probabilistic verification of network control planes". Proceedings of the ACM on Programming Languages 5, ICFP (22 de agosto de 2021): 1–30. http://dx.doi.org/10.1145/3473595.
Texto completo da fonteHyvönen, Jörkki, Jari Saramäki e Kimmo Kaski. "Efficient data structures for sparse network representation". International Journal of Computer Mathematics 85, n.º 8 (agosto de 2008): 1219–33. http://dx.doi.org/10.1080/00207160701753629.
Texto completo da fonteWong, S. V., e A. M. S. Hamouda. "Machinability data representation with artificial neural network". Journal of Materials Processing Technology 138, n.º 1-3 (julho de 2003): 538–44. http://dx.doi.org/10.1016/s0924-0136(03)00143-2.
Texto completo da fonteBuckles, Bill P., Frederick E. Petry e Jayadev Pillai. "Network data models for representation of uncertainty". Fuzzy Sets and Systems 38, n.º 2 (novembro de 1990): 171–90. http://dx.doi.org/10.1016/0165-0114(90)90148-y.
Texto completo da fonteZhan, Huixin, e Victor S. Sheng. "Privacy-Preserving Representation Learning for Text-Attributed Networks with Simplicial Complexes". Proceedings of the AAAI Conference on Artificial Intelligence 37, n.º 13 (26 de junho de 2023): 16143–44. http://dx.doi.org/10.1609/aaai.v37i13.26932.
Texto completo da fonteZhang, Hu, Jingjing Zhou, Ru Li e Yue Fan. "Network representation learning method embedding linear and nonlinear network structures". Semantic Web 13, n.º 3 (6 de abril de 2022): 511–26. http://dx.doi.org/10.3233/sw-212968.
Texto completo da fonteVernon, Matthew C., e Matt J. Keeling. "Representing the UK's cattle herd as static and dynamic networks". Proceedings of the Royal Society B: Biological Sciences 276, n.º 1656 (14 de outubro de 2008): 469–76. http://dx.doi.org/10.1098/rspb.2008.1009.
Texto completo da fonteIddianozie, Chidubem, e Gavin McArdle. "Towards Robust Representations of Spatial Networks Using Graph Neural Networks". Applied Sciences 11, n.º 15 (27 de julho de 2021): 6918. http://dx.doi.org/10.3390/app11156918.
Texto completo da fonteHu, Hao, Mengya Gao e Mingsheng Wu. "Relieving the Incompatibility of Network Representation and Classification for Long-Tailed Data Distribution". Computational Intelligence and Neuroscience 2021 (27 de dezembro de 2021): 1–10. http://dx.doi.org/10.1155/2021/6702625.
Texto completo da fonteXu, Jian, Thanuka L. Wickramarathne e Nitesh V. Chawla. "Representing higher-order dependencies in networks". Science Advances 2, n.º 5 (maio de 2016): e1600028. http://dx.doi.org/10.1126/sciadv.1600028.
Texto completo da fonteZhang, Yixin, Lizhen Cui, Wei He, Xudong Lu e Shipeng Wang. "Behavioral data assists decisions: exploring the mental representation of digital-self". International Journal of Crowd Science 5, n.º 2 (26 de julho de 2021): 185–203. http://dx.doi.org/10.1108/ijcs-03-2021-0011.
Texto completo da fonteDecker, Kevin T., e Brett J. Borghetti. "Hyperspectral Point Cloud Projection for the Semantic Segmentation of Multimodal Hyperspectral and Lidar Data with Point Convolution-Based Deep Fusion Neural Networks". Applied Sciences 13, n.º 14 (14 de julho de 2023): 8210. http://dx.doi.org/10.3390/app13148210.
Texto completo da fonteLiang, Sen, Zhi-ze Zhou, Yu-dong Guo, Xuan Gao, Ju-yong Zhang e Hu-jun Bao. "Facial landmark disentangled network with variational autoencoder". Applied Mathematics-A Journal of Chinese Universities 37, n.º 2 (junho de 2022): 290–305. http://dx.doi.org/10.1007/s11766-022-4589-0.
Texto completo da fonteCraven, Mark W., e Jude W. Shavlik. "Understanding Time-Series Networks: A Case Study in Rule Extraction". International Journal of Neural Systems 08, n.º 04 (agosto de 1997): 373–84. http://dx.doi.org/10.1142/s0129065797000380.
Texto completo da fonteBast, Hannah, e Sabine Storandt. "Frequency Data Compression for Public Transportation Network Algorithms (Extended Abstract)". Proceedings of the International Symposium on Combinatorial Search 4, n.º 1 (20 de agosto de 2021): 205–6. http://dx.doi.org/10.1609/socs.v4i1.18302.
Texto completo da fonteXu, Liang, Yue Zhao, Xiaona Xu, Yigang Liu e Qiang Ji. "Latent Regression Bayesian Network for Speech Representation". Electronics 12, n.º 15 (4 de agosto de 2023): 3342. http://dx.doi.org/10.3390/electronics12153342.
Texto completo da fonteNaseer, Sheraz, Rao Faizan Ali, P. D. D. Dominic e Yasir Saleem. "Learning Representations of Network Traffic Using Deep Neural Networks for Network Anomaly Detection: A Perspective towards Oil and Gas IT Infrastructures". Symmetry 12, n.º 11 (16 de novembro de 2020): 1882. http://dx.doi.org/10.3390/sym12111882.
Texto completo da fonteGatts, C., e A. Mariano. "Data Categorization and Neural Pattern Recognition". Microscopy and Microanalysis 3, S2 (agosto de 1997): 933–34. http://dx.doi.org/10.1017/s1431927600011557.
Texto completo da fonteAltuntas, Volkan. "NodeVector: A Novel Network Node Vectorization with Graph Analysis and Deep Learning". Applied Sciences 14, n.º 2 (16 de janeiro de 2024): 775. http://dx.doi.org/10.3390/app14020775.
Texto completo da fonteZhang, Ye, Yanqi Gao, Yupeng Zhou, Jianan Wang e Minghao Yin. "MRMLREC: A Two-Stage Approach for Addressing Data Sparsity in MOOC Video Recommendation (Student Abstract)". Proceedings of the AAAI Conference on Artificial Intelligence 38, n.º 21 (24 de março de 2024): 23709–11. http://dx.doi.org/10.1609/aaai.v38i21.30536.
Texto completo da fonteMilano, Marianna, Giuseppe Agapito e Mario Cannataro. "Challenges and Limitations of Biological Network Analysis". BioTech 11, n.º 3 (7 de julho de 2022): 24. http://dx.doi.org/10.3390/biotech11030024.
Texto completo da fonteRossi, R. A., L. K. McDowell, D. W. Aha e J. Neville. "Transforming Graph Data for Statistical Relational Learning". Journal of Artificial Intelligence Research 45 (30 de outubro de 2012): 363–441. http://dx.doi.org/10.1613/jair.3659.
Texto completo da fonteZhang, Sen, Shaobo Li, Xiang Li e Yong Yao. "Representation of Traffic Congestion Data for Urban Road Traffic Networks Based on Pooling Operations". Algorithms 13, n.º 4 (2 de abril de 2020): 84. http://dx.doi.org/10.3390/a13040084.
Texto completo da fonteShcherbakov, A. V., V. G. Kharitonenko, A. I. Chuprov e A. E. Gainov. "ENSURING DATA UNIQUENESS IN SEMANTIC NETWORKS". Vestnik komp'iuternykh i informatsionnykh tekhnologii, n.º 228 (junho de 2023): 36–40. http://dx.doi.org/10.14489/vkit.2023.06.pp.036-040.
Texto completo da fonteHeo, Seongsil, Sungsik Kim e Jaekoo Lee. "BIMO: Bootstrap Inter–Intra Modality at Once Unsupervised Learning for Multivariate Time Series". Applied Sciences 14, n.º 9 (30 de abril de 2024): 3825. http://dx.doi.org/10.3390/app14093825.
Texto completo da fonteIdiart, Marco, Barry Berk e L. F. Abbott. "Reduced Representation by Neural Networks with Restricted Receptive Fields". Neural Computation 7, n.º 3 (maio de 1995): 507–17. http://dx.doi.org/10.1162/neco.1995.7.3.507.
Texto completo da fonteBautista, John Lorenzo, Yun Kyung Lee e Hyun Soon Shin. "Speech Emotion Recognition Based on Parallel CNN-Attention Networks with Multi-Fold Data Augmentation". Electronics 11, n.º 23 (28 de novembro de 2022): 3935. http://dx.doi.org/10.3390/electronics11233935.
Texto completo da fonteLiu, Hao, Jindong Han, Yanjie Fu, Jingbo Zhou, Xinjiang Lu e Hui Xiong. "Multi-modal transportation recommendation with unified route representation learning". Proceedings of the VLDB Endowment 14, n.º 3 (novembro de 2020): 342–50. http://dx.doi.org/10.14778/3430915.3430924.
Texto completo da fonteZhang, Kainan, Zhipeng Cai e Daehee Seo. "Privacy-Preserving Federated Graph Neural Network Learning on Non-IID Graph Data". Wireless Communications and Mobile Computing 2023 (3 de fevereiro de 2023): 1–13. http://dx.doi.org/10.1155/2023/8545101.
Texto completo da fonteWang, Jing, Songhe Feng, Gengyu Lyu e Jiazheng Yuan. "SURER: Structure-Adaptive Unified Graph Neural Network for Multi-View Clustering". Proceedings of the AAAI Conference on Artificial Intelligence 38, n.º 14 (24 de março de 2024): 15520–27. http://dx.doi.org/10.1609/aaai.v38i14.29478.
Texto completo da fontePoulton, Mary M., Ben K. Sternberg e Charles E. Glass. "Location of subsurface targets in geophysical data using neural networks". GEOPHYSICS 57, n.º 12 (dezembro de 1992): 1534–44. http://dx.doi.org/10.1190/1.1443221.
Texto completo da fonteBartsev, S. I., P. M. Baturina e G. M. Markova. "Neural Network-Based Decoding Input Stimulus Data Based on Recurrent Neural Network Neural Activity Pattern". Doklady Biological Sciences 502, n.º 1 (17 de março de 2022): 1–5. http://dx.doi.org/10.1134/s001249662201001x.
Texto completo da fonteLiu, Xinlong, Chu He, Dehui Xiong e Mingsheng Liao. "Pattern Statistics Network for Classification of High-Resolution SAR Images". Remote Sensing 11, n.º 16 (20 de agosto de 2019): 1942. http://dx.doi.org/10.3390/rs11161942.
Texto completo da fonteYe, Zhonglin, Haixing Zhao, Ke Zhang e Yu Zhu. "Multi-View Network Representation Learning Algorithm Research". Algorithms 12, n.º 3 (12 de março de 2019): 62. http://dx.doi.org/10.3390/a12030062.
Texto completo da fonteSun, Hanlin, Wei Jie, Jonathan Loo, Liang Chen, Zhongmin Wang, Sugang Ma, Gang Li e Shuai Zhang. "Network Representation Learning Enhanced by Partial Community Information That Is Found Using Game Theory". Information 12, n.º 5 (25 de abril de 2021): 186. http://dx.doi.org/10.3390/info12050186.
Texto completo da fonteMonterubbiano, Andrea, Raphael Azorin, Gabriele Castellano, Massimo Gallo, Salvatore Pontarelli e Dario Rossi. "SPADA: A Sparse Approximate Data Structure Representation for Data Plane Per-flow Monitoring". Proceedings of the ACM on Networking 1, CoNEXT3 (27 de novembro de 2023): 1–25. http://dx.doi.org/10.1145/3629149.
Texto completo da fonteKominakis, A. P. "Graph analysis of animals' pedigrees". Archives Animal Breeding 44, n.º 5 (10 de outubro de 2001): 521–30. http://dx.doi.org/10.5194/aab-44-521-2001.
Texto completo da fonteTu, Wenxuan, Sihang Zhou, Xinwang Liu, Xifeng Guo, Zhiping Cai, En Zhu e Jieren Cheng. "Deep Fusion Clustering Network". Proceedings of the AAAI Conference on Artificial Intelligence 35, n.º 11 (18 de maio de 2021): 9978–87. http://dx.doi.org/10.1609/aaai.v35i11.17198.
Texto completo da fonteTian, Hao, e Reza Zafarani. "Higher-Order Networks Representation and Learning: A Survey". ACM SIGKDD Explorations Newsletter 26, n.º 1 (24 de julho de 2024): 1–18. http://dx.doi.org/10.1145/3682112.3682114.
Texto completo da fonteEsser, Pascal, Maximilian Fleissner e Debarghya Ghoshdastidar. "Non-parametric Representation Learning with Kernels". Proceedings of the AAAI Conference on Artificial Intelligence 38, n.º 11 (24 de março de 2024): 11910–18. http://dx.doi.org/10.1609/aaai.v38i11.29077.
Texto completo da fonteJing, Dongsheng, Yu Yang, Zhimin Gu, Renjun Feng, Yan Li e Haitao Jiang. "Multi-Feature Fusion in Graph Convolutional Networks for Data Network Propagation Path Tracing". Electronics 13, n.º 17 (28 de agosto de 2024): 3412. http://dx.doi.org/10.3390/electronics13173412.
Texto completo da fonte