Literatura científica selecionada sobre o tema "Navigation models"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Navigation models".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Navigation models"
Greenwood, Narcessa Gail-Rosales, Cynthia B. Taniguchi, Amy Sheldrick e Leslie Hurley. "Navigation models in diverse outpatient settings: Shared themes, challenges, and opportunities." Journal of Clinical Oncology 36, n.º 30_suppl (20 de outubro de 2018): 134. http://dx.doi.org/10.1200/jco.2018.36.30_suppl.134.
Texto completo da fonteCao, Caroline G. L., e Paul Milgram. "Direction and Location Are Not Sufficient for Navigating in Nonrigid Environments: An Empirical Study in Augmented Reality". Presence: Teleoperators and Virtual Environments 16, n.º 6 (1 de dezembro de 2007): 584–602. http://dx.doi.org/10.1162/pres.16.6.584.
Texto completo da fonteBodas Gallego, Alberto. "Modern Solar Navigation Techniques". Groundings Undergraduate 14 (1 de abril de 2023): 29–50. http://dx.doi.org/10.36399/groundingsug.14.143.
Texto completo da fonteNosov, P. S., I. V. Palamarchuk, S. M. Zinchenko, Ya A. Nahrybelnyi, I. S. Popovych e ,. H. V. Nosova. "Development of means for experimental identification of navigator attention in ergatic systems of maritime transport". Bulletin of the Karaganda University. "Physics" Series 97, n.º 1 (30 de março de 2020): 58–69. http://dx.doi.org/10.31489/2020ph1/58-69.
Texto completo da fonteLevchenko, O. "A METHOD FOR FORMALIZING THE DECISION-MAKING PROCESS FOR PREVENTING DANGEROUS SITUATIONS IN THE E-NAVIGATION SYSTEM". Shipping & Navigation 34, n.º 1 (5 de maio de 2023): 115–26. http://dx.doi.org/10.31653/2306-5761.34.2023.115-126.
Texto completo da fonteZhou, Gengze, Yicong Hong e Qi Wu. "NavGPT: Explicit Reasoning in Vision-and-Language Navigation with Large Language Models". Proceedings of the AAAI Conference on Artificial Intelligence 38, n.º 7 (24 de março de 2024): 7641–49. http://dx.doi.org/10.1609/aaai.v38i7.28597.
Texto completo da fonteBerdahl, Andrew M., Albert B. Kao, Andrea Flack, Peter A. H. Westley, Edward A. Codling, Iain D. Couzin, Anthony I. Dell e Dora Biro. "Collective animal navigation and migratory culture: from theoretical models to empirical evidence". Philosophical Transactions of the Royal Society B: Biological Sciences 373, n.º 1746 (26 de março de 2018): 20170009. http://dx.doi.org/10.1098/rstb.2017.0009.
Texto completo da fontePalamarchuk, I. V. "MODELING THE DIVERGENCE OF SHIPS IN THE DECISION SUPPORT SYSTEM OF THE NAVIGATOR". Scientific Bulletin Kherson State Maritime Academy 1, n.º 22 (2020): 45–53. http://dx.doi.org/10.33815/2313-4763.2020.1.22.045-053.
Texto completo da fonteFreeman, Robin, e Dora Biro. "Modelling Group Navigation: Dominance and Democracy in Homing Pigeons". Journal of Navigation 62, n.º 1 (22 de dezembro de 2008): 33–40. http://dx.doi.org/10.1017/s0373463308005080.
Texto completo da fonteJindal, Honey, e Neetu Sardana. "An Empirical Analysis of Web Navigation Prediction Techniques". Journal of Cases on Information Technology 19, n.º 1 (janeiro de 2017): 1–14. http://dx.doi.org/10.4018/jcit.2017010101.
Texto completo da fonteTeses / dissertações sobre o assunto "Navigation models"
Masek, Theodore. "Acoustic image models for navigation with forward-looking sonars". Thesis, Monterey, Calif. : Naval Postgraduate School, 2008. http://edocs.nps.edu/npspubs/scholarly/theses/2008/Dec/08Dec%5FMasek.pdf.
Texto completo da fonteThesis Advisor(s): Kolsch, Mathias. "December 2008." Description based on title screen as viewed on January 30, 2009. Includes bibliographical references (p. 51-52). Also available in print.
Sutton, R. "Fuzzy set models of the helmsman steering a ship in course-keeping and course-changing modes". Thesis, Cardiff University, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.377871.
Texto completo da fonteLlofriu, Alonso Martin I. "Multi-Scale Spatial Cognition Models and Bio-Inspired Robot Navigation". Scholar Commons, 2017. http://scholarcommons.usf.edu/etd/6888.
Texto completo da fonteJulier, Simon J. "Process models for the navigation of high speed land vehicles". Thesis, University of Oxford, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.362011.
Texto completo da fonteKerfs, Jeremy N. "Models for Pedestrian Trajectory Prediction and Navigation in Dynamic Environments". DigitalCommons@CalPoly, 2017. https://digitalcommons.calpoly.edu/theses/1716.
Texto completo da fonteKretzschmar, Henrik [Verfasser], e Wolfram [Akademischer Betreuer] Burgard. "Learning probabilistic models for mobile robot navigation = Techniken zum maschinellen Lernen probabilistischer Modelle für die Navigation mit mobilen Robotern". Freiburg : Universität, 2014. http://d-nb.info/1123481040/34.
Texto completo da fonteReid, Zachary A. "Leveraging 3D Models for SAR-based Navigation in GPS-denied Environments". Wright State University / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=wright1540419210051179.
Texto completo da fonteGoldiez, Brian. "TECHNIQUES FOR ASSESSING AND IMPROVING PERFORMANCE IN NAVIGATION AND W". Doctoral diss., University of Central Florida, 2004. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/3603.
Texto completo da fontePh.D.
Other
Arts and Sciences
Modeling and Simulation
Yu, Chunlei. "Contribution to evidential models for perception grids : application to intelligent vehicle navigation". Thesis, Compiègne, 2016. http://www.theses.fr/2016COMP2293.
Texto completo da fonteFor intelligent vehicle applications, a perception system is a key component to characterize in real-time a model of the driving environment at the surrounding of the vehicle. When modeling the environment, obstacle information is the first feature that has to be managed since collisions can be fatal for the other road users or for the passengers on-board the considered vehicle. Characterization of occupation space is therefore crucial but not sufficient for autonomous vehicles since the control system needs to find the navigable space for safe trajectory planning. Indeed, in order to run on public roads with other users, the vehicle needs to follow the traffic rules which are, for instance, described by markings painted on the carriageway. In this work, we focus on an ego-centered grid-based approach to model the environment. The objective is to include in a unified world model obstacle information with semantic road rules. To model obstacle information, occupancy is handled by interpreting the information of different sensors into the values of the cells. To model the semantic of the navigable space, we propose to introduce the notion of lane grids which consist in integrating semantic lane information into the cells of the grid. The combination of these two levels of information gives a refined environment model. When interpreting sensor data into obstacle information, uncertainty inevitably arises from ignorance and errors. Ignorance is due to the perception of new areas and errors come from noisy measurements and imprecise pose estimation. In this research, the belief function theory is adopted to deal with uncertainties and we propose evidential models for different kind of sensors like lidars and cameras. Lane grids contain semantic lane information coming from lane marking information for instance. To this end, we propose to use a prior map which contains detailed road information including road orientation and lane markings. This information is extracted from the map by using a pose estimate provided by a localization system. In the proposed model, we integrate lane information into the grids by taking into account the uncertainty of the estimated pose. The proposed algorithms have been implemented and tested on real data acquired on public roads. We have developed algorithms in Matlab and C++ using the PACPUS software framework developed at the laboratory
Lui, Sin Ting Angela. "Enhancing stochastic mobility prediction models for robust planetary navigation on unstructured terrain". Thesis, The University of Sydney, 2014. http://hdl.handle.net/2123/12904.
Texto completo da fonteLivros sobre o assunto "Navigation models"
Park, Howard. Navigation conditions in lower lock approach of Ice Harbor Lock and Dam, Snake River, Washington. [Vicksburg, Miss: US Army Corps of Engineers, Engineer Research and Development Center, Coastal and Hydraulics Laboratory, 2002.
Encontre o texto completo da fontePark, Howard. Navigation conditions in lower lock approach of Ice Harbor Lock and Dam, Snake River, Washington. Vicksburg, MS (3909 Halls Ferry Road, Vicksburg, 39180): U.S. Army Corps of Engineers, Engineer Research and Development Center, Coastal and Hydraulics Laboratory, 2002.
Encontre o texto completo da fonteLibý, Josef. Model investigations of the improvement of navigations conditions on the lower Elbe (Labe) between Střekov anf Prostřední Žleb. Prague: Výzkumný ústav vodohospodářský T.G. Masaryka, 2002.
Encontre o texto completo da fonteBottin, Robert R. Design for navigation improvements at Nome Harbor, Alaska: Coastal model investigation. Vicksburg, Miss: U.S. Army Engineer Waterways Experiment Station, 1998.
Encontre o texto completo da fonteBottin, Robert R. Design for navigation improvements at Nome Harbor, Alaska: Coastal model investigation. Vicksburg, Miss: U.S. Army Engineer Waterways Experiment Station, 1998.
Encontre o texto completo da fonteMyrick, Carolyn M. Navigation conditions at Mitchell Lock and Dam, Coosa River, Alabama: Hydraulic model investigation. Vicksburg, Miss: Dept. of the Army, Waterways Experiment Station, Corps of Engineers, 1985.
Encontre o texto completo da fonteMyrick, Carolyn M. Navigation conditions at Mitchell Lock and Dam, Coosa River, Alabama: Hydraulic model investigation. Vicksburg, Miss: Dept. of the Army, Waterways Experiment Station, Corps of Engineers, 1985.
Encontre o texto completo da fonteMyrick, Carolyn M. Navigation conditions in vicinity of Walter Bouldin Lock and Dam, Coosa River Project: Hydraulic model investigation. Vicksburg, Miss: Dept. of the Army, Waterways Experiment Station, Corps of Engineers, 1985.
Encontre o texto completo da fonteD, Mulherin Nathan, U.S. Cold Regions Research and Engineering Laboratory. e United States. Army. Corps of Engineers. Alaska District., eds. Development and results of a Northern Sea Route transit model. [Hanover, N.H.]: Dept. of the Army, Cold Regions Research and Engineering Laboratory, 1996.
Encontre o texto completo da fonteShudde, Rex H. Some tactical algorithms for spherical geometry. Monterey, Calif: Naval Postgraduate School, 1986.
Encontre o texto completo da fonteCapítulos de livros sobre o assunto "Navigation models"
Miller, James. "Force Models". In Planetary Spacecraft Navigation, 51–93. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-78916-3_2.
Texto completo da fonteWells, Kristen J., e Sumayah Nuhaily. "Models of Patient Navigation". In Patient Navigation, 27–40. New York, NY: Springer New York, 2017. http://dx.doi.org/10.1007/978-1-4939-6979-1_2.
Texto completo da fonteAyoun, André, Jean-Pierre Gambotto e Jean-Luc Jezouin. "Geometric Models for Navigation". In Mapping and Spatial Modelling for Navigation, 245–58. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-84215-3_13.
Texto completo da fonteChroust, Gerhard. "Navigation in process models". In Software Process Technology, 119–22. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/3-540-57739-4_16.
Texto completo da fonteYan, Jinjin, e Sisi Zlatanova. "Space-based Navigation Models". In Seamless 3D Navigation in Indoor and Outdoor Spaces, 45–62. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003281146-3.
Texto completo da fonteEpstein, Susan L., Anoop Aroor, Matthew Evanusa, Elizabeth I. Sklar e Simon Parsons. "Learning Spatial Models for Navigation". In Spatial Information Theory, 403–25. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-23374-1_19.
Texto completo da fonteAckermann, Friedrich. "Digital Terrain Models of Forest Areas by Airborne Laser Profiling". In High Precision Navigation, 239–50. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-74585-0_17.
Texto completo da fonteMansour, Moussa, e David Donaldson. "Invasive Electroanatomical Mapping and Navigation". In Cardiac Electrophysiology Methods and Models, 349–56. Boston, MA: Springer US, 2010. http://dx.doi.org/10.1007/978-1-4419-6658-2_17.
Texto completo da fonteRamírez-Hernández, Luis Roberto, Julio Cesar Rodríguez-Quiñonez, Moisés J. Castro-Toscano, Daniel Hernández-Balbuena, Wendy Flores-Fuentes, Moisés Rivas-López, Lars Lindner, Danilo Cáceres-Hernández, Marina Kolendovska e Fabián N. Murrieta-Rico. "Stereoscopic Vision Systems in Machine Vision, Models, and Applications". In Machine Vision and Navigation, 241–65. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-22587-2_8.
Texto completo da fonteYan, Lei, An Li, Wanfeng Ji e Yang Li. "Topographic Elevation Navigation and Positioning Fundamentals and Theoretical Models". In Navigation: Science and Technology, 193–230. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-97-5524-0_6.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Navigation models"
Balcı, Emirhan, Mehmet Sarıgül e Barış Ata. "Prompting Large Language Models for Aerial Navigation". In 2024 9th International Conference on Computer Science and Engineering (UBMK), 304–9. IEEE, 2024. https://doi.org/10.1109/ubmk63289.2024.10773467.
Texto completo da fonteCai, Wenzhe, Siyuan Huang, Guangran Cheng, Yuxing Long, Peng Gao, Changyin Sun e Hao Dong. "Bridging Zero-shot Object Navigation and Foundation Models through Pixel-Guided Navigation Skill". In 2024 IEEE International Conference on Robotics and Automation (ICRA), 5228–34. IEEE, 2024. http://dx.doi.org/10.1109/icra57147.2024.10610499.
Texto completo da fonteBurlet, J., T. Fraichard e O. Aycard. "Robust navigation using Markov models". In 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, 2005. http://dx.doi.org/10.1109/iros.2005.1545091.
Texto completo da fonteAnderson, Mark. "Standard optimal pilot models". In Guidance, Navigation, and Control Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1994. http://dx.doi.org/10.2514/6.1994-3627.
Texto completo da fonteAnthes, Christoph, Paul Heinzlreiter, Gerhard Kurka e Jens Volkert. "Navigation models for a flexible, multi-mode VR navigation framework". In the 2004 ACM SIGGRAPH international conference. New York, New York, USA: ACM Press, 2004. http://dx.doi.org/10.1145/1044588.1044693.
Texto completo da fonteZhang, Yubo, Hao Tan e Mohit Bansal. "Diagnosing the Environment Bias in Vision-and-Language Navigation". In Twenty-Ninth International Joint Conference on Artificial Intelligence and Seventeenth Pacific Rim International Conference on Artificial Intelligence {IJCAI-PRICAI-20}. California: International Joint Conferences on Artificial Intelligence Organization, 2020. http://dx.doi.org/10.24963/ijcai.2020/124.
Texto completo da fonteDoman, David, e Mark Anderson. "Fixed order optimal pilot models". In Guidance, Navigation, and Control Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1996. http://dx.doi.org/10.2514/6.1996-3871.
Texto completo da fonteBaras, Karolina, A. Moreira e F. Meneses. "Navigation based on symbolic space models". In 2010 International Conference on Indoor Positioning and Indoor Navigation (IPIN). IEEE, 2010. http://dx.doi.org/10.1109/ipin.2010.5646810.
Texto completo da fonteCanciani, Aaron, e John Raquet. "Self Building World Models for Navigation". In 2017 International Technical Meeting of The Institute of Navigation. Institute of Navigation, 2017. http://dx.doi.org/10.33012/2017.14966.
Texto completo da fonteKruse, Thibault, Alexandra Kirsch, Harmish Khambhaita e Rachid Alami. "Evaluating directional cost models in navigation". In HRI'14: ACM/IEEE International Conference on Human-Robot Interaction. New York, NY, USA: ACM, 2014. http://dx.doi.org/10.1145/2559636.2559662.
Texto completo da fonteRelatórios de organizações sobre o assunto "Navigation models"
Gilbert, Jennifer, Stephanie Veazie, Kevin Joines, Kara Winchell, Rose Relevo, Robin Paynter e Jeanne-Marie Guise. Patient Navigation Models for Lung Cancer. Agency for Healthcare Research and Quality (AHRQ), dezembro de 2018. http://dx.doi.org/10.23970/ahrqepcrapidlung.
Texto completo da fonteRyerson, R. A. Global navigation satellite system augmentation models environmental scan. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2015. http://dx.doi.org/10.4095/297405.
Texto completo da fonteCronin, Thomas W. Natural Models for Autonomous Control of Spatial Navigation, Sensing, and Guidance. Fort Belvoir, VA: Defense Technical Information Center, maio de 2013. http://dx.doi.org/10.21236/ada594988.
Texto completo da fonteMarshall, Justin, Thomas Cronin e Nick Roberts. Natural Models for Autonomous Control of Spatial Navigation, Sensing, and Guidance, Part 1. Fort Belvoir, VA: Defense Technical Information Center, junho de 2011. http://dx.doi.org/10.21236/ada547656.
Texto completo da fonteMoore, Gabriel, Anton du Toit, Susie Thompson, Jillian Hutchinson, Adira Wiryoatmodjo, Prithivi Prakash Sivaprakash e Rebecca Gordon. Effectiveness of school located nurse models. The Sax Institute, maio de 2021. http://dx.doi.org/10.57022/gmwr5438.
Texto completo da fonteAltman, Safra, Krystyna Powell e Marin Kress. Marine bioinvasion risk : review of current ecological models. Engineer Research and Development Center (U.S.), outubro de 2023. http://dx.doi.org/10.21079/11681/47820.
Texto completo da fontePatev, Robert C., David L. Buccini, James W. Bartek e Stuart Foltz. Improved Reliability Models for Mechanical and Electrical Components at Navigation Lock and Dam and Flood Risk Management Facilities. Fort Belvoir, VA: Defense Technical Information Center, abril de 2013. http://dx.doi.org/10.21236/ada582967.
Texto completo da fonteLi, Honghai, Mitchell Brown, Lihwa Lin, Yan Ding, Tanya Beck, Alejandro Sanchez,, Weiming Wu, Christopher Reed e Alan Zundel. Coastal Modeling System user's manual. Engineer Research and Development Center (U.S.), abril de 2024. http://dx.doi.org/10.21079/11681/48392.
Texto completo da fonteLemasson, Bertrand, Emily Russ e Chanda Littles. A review of habitat modeling methods that can advance our ability to estimate the ecological cobenefits of dredge material placement. Engineer Research and Development Center (U.S.), setembro de 2024. http://dx.doi.org/10.21079/11681/49425.
Texto completo da fonteShukla, Indu, Rajeev Agrawal, Kelly Ervin e Jonathan Boone. AI on digital twin of facility captured by reality scans. Engineer Research and Development Center (U.S.), novembro de 2023. http://dx.doi.org/10.21079/11681/47850.
Texto completo da fonte