Siga este link para ver outros tipos de publicações sobre o tema: Narrow band gap.

Artigos de revistas sobre o tema "Narrow band gap"

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Narrow band gap".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.

1

Cui, Qiuhong, e Guillermo C. Bazan. "Narrow Band Gap Conjugated Polyelectrolytes". Accounts of Chemical Research 51, n.º 1 (14 de dezembro de 2017): 202–11. http://dx.doi.org/10.1021/acs.accounts.7b00501.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Henson, Zachary B., Gregory C. Welch, Thomas van der Poll e Guillermo C. Bazan. "Pyridalthiadiazole-Based Narrow Band Gap Chromophores". Journal of the American Chemical Society 134, n.º 8 (17 de fevereiro de 2012): 3766–79. http://dx.doi.org/10.1021/ja209331y.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Filonov, A. B., D. B. Migas, V. L. Shaposhnikov, V. E. Borisenko e A. Heinrich. "Narrow-gap semiconducting silicides: the band structure". Microelectronic Engineering 50, n.º 1-4 (janeiro de 2000): 249–55. http://dx.doi.org/10.1016/s0167-9317(99)00289-0.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Walukiewicz, Wladek. "Narrow band gap group III-nitride alloys". Physica E: Low-dimensional Systems and Nanostructures 20, n.º 3-4 (janeiro de 2004): 300–307. http://dx.doi.org/10.1016/j.physe.2003.08.023.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Hayase, Shuzi. "Perovskite solar cells with narrow band gap". Current Opinion in Electrochemistry 11 (outubro de 2018): 146–50. http://dx.doi.org/10.1016/j.coelec.2018.10.017.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Galaiko, V. P., E. V. Bezuglyi, E. N. Bratus’ e V. S. Shumeiko. "Relaxation processes and kinetic phenomena in narrow-gap superconductors". Soviet Journal of Low Temperature Physics 14, n.º 4 (1 de abril de 1988): 242–44. https://doi.org/10.1063/10.0031925.

Texto completo da fonte
Resumo:
The possibility of using the two-band superconductor model1 by taking into consideration the electron scattering at the lattice defects and the correlation interaction of the wide- and narrow-band electrons for describing the kinetic properties of high-Tc superconductors (HTS) in normal state is discussed. Specific features of the relaxation processes in the electron system of a narrow-band conductor, viz. the non-Born impurity scattering in the region of band overlapping, and an anomalous increase in the electron–electron scattering for a partially filled narrow band, are explained. The temperature dependence of resistance, caused by the interference of various relaxation mechanisms, contains a broad-linear region typical of HTS, while the thermoelectric coefficient has an anomalously large value which reverses its sign upon a variation of temperature and electron concentration. A comparison is made between the kinetic and thermodynamic properties of the two-band model for different values of its microscopic parameters.
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Dashevsky, Z., V. Kasiyan, S. Asmontas, J. Gradauskas, E. Shirmulis, E. Flitsiyan e L. Chernyak. "Photothermal effect in narrow band gap PbTe semiconductor". Journal of Applied Physics 106, n.º 7 (outubro de 2009): 076105. http://dx.doi.org/10.1063/1.3243081.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Jenekhe, Samson A. "A class of narrow-band-gap semiconducting polymers". Nature 322, n.º 6077 (julho de 1986): 345–47. http://dx.doi.org/10.1038/322345a0.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Sofo, J. O., e G. D. Mahan. "Electronic structure ofCoSb3:A narrow-band-gap semiconductor". Physical Review B 58, n.º 23 (15 de dezembro de 1998): 15620–23. http://dx.doi.org/10.1103/physrevb.58.15620.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Mahanti, S. D., Khang Hoang e Salameh Ahmad. "Deep defect states in narrow band-gap semiconductors". Physica B: Condensed Matter 401-402 (dezembro de 2007): 291–95. http://dx.doi.org/10.1016/j.physb.2007.08.169.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
11

Haddad, G. I., R. K. Mains, U. K. Reddy e J. R. East. "A proposed narrow-band-gap base transistor structure". Superlattices and Microstructures 5, n.º 3 (janeiro de 1989): 437–41. http://dx.doi.org/10.1016/0749-6036(89)90329-7.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
12

Triboulet, R. "MOVPE of narrow band gap II–VI materials". Journal of Crystal Growth 107, n.º 1-4 (janeiro de 1991): 598–604. http://dx.doi.org/10.1016/0022-0248(91)90527-c.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
13

Singh, M., e P. R. Wallace. "Inter-band magneto-optics in narrow-gap semiconductors". Journal of Physics C: Solid State Physics 20, n.º 14 (20 de maio de 1987): 2169–81. http://dx.doi.org/10.1088/0022-3719/20/14/018.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
14

Sun, Peijie, Niels Oeschler, Simon Johnsen, Bo B. Iversen e Frank Steglich. "Narrow band gap and enhanced thermoelectricity in FeSb2". Dalton Trans. 39, n.º 4 (2010): 1012–19. http://dx.doi.org/10.1039/b918909b.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
15

Humayun, M. A., M. A. Rashid, F. A. Malek, A. N. Hussain e I. Daut. "Design of Quantum Dot Based LASER with Ultra-Low Threshold Current Density". Applied Mechanics and Materials 229-231 (novembro de 2012): 1639–42. http://dx.doi.org/10.4028/www.scientific.net/amm.229-231.1639.

Texto completo da fonte
Resumo:
Reduction in threshold current density is the major challenge in the field of semiconductor laser design. The threshold current density can be minimized by introducing low dimensional material system with narrow band gap. InN has a narrow band gap of 0.7 eV and quantum dot provides three dimensional confinement factor. In this paper, we propose then InN quantum dot as the active layer material that will serve both the purpose of narrow band gap and three dimensional confinement. The simulation results show that the current density reduces drastically with the cavity length.
Estilos ABNT, Harvard, Vancouver, APA, etc.
16

Chu, Jun‐hao, Zheng‐yu Mi e Ding‐yuan Tang. "Band‐to‐band optical absorption in narrow‐gap Hg1−xCdxTe semiconductors". Journal of Applied Physics 71, n.º 8 (15 de abril de 1992): 3955–61. http://dx.doi.org/10.1063/1.350867.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
17

Choi, J. B., S. Liu e H. D. Drew. "Metallic impurity band in the narrow-band-gap semiconductorn-type InSb". Physical Review B 43, n.º 5 (15 de fevereiro de 1991): 4046–50. http://dx.doi.org/10.1103/physrevb.43.4046.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
18

Söderström, J. R., E. T. Yu, M. K. Jackson, Y. Rajakarunanayake e T. C. McGill. "Two‐band modeling of narrow band gap and interband tunneling devices". Journal of Applied Physics 68, n.º 3 (agosto de 1990): 1372–75. http://dx.doi.org/10.1063/1.346688.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
19

Wei, Yong Sen. "Narrow-Band-Gap Polymer Photovoltaic Materials Synthesis and Photovoltaic Research". Applied Mechanics and Materials 273 (janeiro de 2013): 468–72. http://dx.doi.org/10.4028/www.scientific.net/amm.273.468.

Texto completo da fonte
Resumo:
In recent years, research of the narrow-band-gap polymer photovoltaic (PV) materials in the field of light-emitting diodes, field effect transistors, solar cells and sensors has made tremendous progress and its application becomes more widely. In order to obtain a better performance of the photovoltaic material, in the process of design the polymer, we must consider the spectral range, the energy gap, the balance between the LUMO and HOMO level. Through the analysis of the narrow-band-gap polymers, this paper described the synthesis of the photovoltaic material, and detailed analyzes its photovoltaic characteristics. This paper introduces the double bonds to combine DTBT receptors and different electron donor, to synthesize new narrow-band-gap polymer photovoltaic materials with photovoltaic properties.
Estilos ABNT, Harvard, Vancouver, APA, etc.
20

Fang, Hui, Fei-Peng Zhang, Zhi-Nian Jiang, Jin-Yun Peng e Ru-Zhi Wang. "Strain-induced asymmetric modulation of band gap in narrow armchair-edge graphene nanoribbon". Modern Physics Letters B 29, n.º 34 (20 de dezembro de 2015): 1550224. http://dx.doi.org/10.1142/s0217984915502243.

Texto completo da fonte
Resumo:
We investigate the band structure of narrow armchair-edge graphene nanoribbons (AGNRs) under tensile strain by means of an extension of the Extended Hückel method. The strain-induced band gap modulation presents asymmetric behavior. The asymmetric modulation of band gap is derived from the different changes of conduction and valence bands near Fermi level under tensile strain. Further analysis suggests that the asymmetric variation of band structure near Fermi level only appear in narrow armchair-edge graphene nanoribbons.
Estilos ABNT, Harvard, Vancouver, APA, etc.
21

Deng, J. Y., L. X. Guo e J. H. Yang. "Narrow Band Notches for Ultra-Wideband Antenna Using Electromagnetic Band-Gap Structures". Journal of Electromagnetic Waves and Applications 25, n.º 17-18 (janeiro de 2011): 2320–27. http://dx.doi.org/10.1163/156939311798806211.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
22

Livache, Clément, Nicolas Goubet, Bertille Martinez, Amardeep Jagtap, Junling Qu, Sandrine Ithurria, Mathieu G. Silly, Benoit Dubertret e Emmanuel Lhuillier. "Band Edge Dynamics and Multiexciton Generation in Narrow Band Gap HgTe Nanocrystals". ACS Applied Materials & Interfaces 10, n.º 14 (26 de março de 2018): 11880–87. http://dx.doi.org/10.1021/acsami.8b00153.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
23

Panday, Suman Raj, e Maxim Dzero. "Interacting fermions in narrow-gap semiconductors with band inversion". Journal of Physics: Condensed Matter 33, n.º 27 (28 de maio de 2021): 275601. http://dx.doi.org/10.1088/1361-648x/abfc6e.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
24

Litovchenko, V., A. Evtukh, M. Semenenko, A. Grygoriev, O. Yilmazoglu, H. L. Hartnagel, L. Sirbu, I. M. Tiginyanu e V. V. Ursaki. "Electron field emission from narrow band gap semiconductors (InAs)". Semiconductor Science and Technology 22, n.º 10 (5 de setembro de 2007): 1092–96. http://dx.doi.org/10.1088/0268-1242/22/10/003.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
25

Mookerjea, Saurabh, Ramakrishnan Krishnan, Aaron Vallett, Theresa Mayer e Suman Datta. "Inter-band Tunnel Transistor Architecture using Narrow Gap Semiconductors". ECS Transactions 19, n.º 5 (18 de dezembro de 2019): 287–92. http://dx.doi.org/10.1149/1.3119553.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
26

Liu, Xiaofeng, Yanming Sun, Louis A. Perez, Wen Wen, Michael F. Toney, Alan J. Heeger e Guillermo C. Bazan. "Narrow-Band-Gap Conjugated Chromophores with Extended Molecular Lengths". Journal of the American Chemical Society 134, n.º 51 (13 de dezembro de 2012): 20609–12. http://dx.doi.org/10.1021/ja310483w.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
27

Arbizzani, Catia, Mariaella Catellani, M. Grazia Cerroni e Marina Mastragostino. "Polydithienothiophenes: two new conjugated materials with narrow band gap". Synthetic Metals 84, n.º 1-3 (janeiro de 1997): 249–50. http://dx.doi.org/10.1016/s0379-6779(97)80736-9.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
28

Del Nero, Jordan, e Bernardo Laks. "Spectroscopic study of polyazopyrroles (a narrow band gap system)". Synthetic Metals 101, n.º 1-3 (maio de 1999): 440–41. http://dx.doi.org/10.1016/s0379-6779(98)01134-5.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
29

Lee, Ven-Chung. "Electron-mediated indirect interaction in narrow-band-gap semiconductors". Physical Review B 44, n.º 19 (15 de novembro de 1991): 10892–94. http://dx.doi.org/10.1103/physrevb.44.10892.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
30

White, J. K., C. A. Musca, H. C. Lee e L. Faraone. "Hydrogenation of ZnS passivation on narrow-band gap HgCdTe". Applied Physics Letters 76, n.º 17 (24 de abril de 2000): 2448–50. http://dx.doi.org/10.1063/1.126372.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
31

Welch, Gregory C., e Guillermo C. Bazan. "Lewis Acid Adducts of Narrow Band Gap Conjugated Polymers". Journal of the American Chemical Society 133, n.º 12 (30 de março de 2011): 4632–44. http://dx.doi.org/10.1021/ja110968m.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
32

Nachev, Ivo S. "Band-mixing and bound states in narrow-gap semiconductors". Physica Scripta 37, n.º 5 (1 de maio de 1988): 825–27. http://dx.doi.org/10.1088/0031-8949/37/5/032.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
33

Misra, S., G. S. Tripathi e P. K. Misra. "Temperature-dependent magnetic susceptibility of narrow band-gap semiconductors". Journal of Physics C: Solid State Physics 19, n.º 12 (30 de abril de 1986): 2007–19. http://dx.doi.org/10.1088/0022-3719/19/12/014.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
34

Gilbert, M. J., R. Akis e D. K. Ferry. "Semiconductor waveguide inversion in disordered narrow band-gap materials". Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 21, n.º 4 (2003): 1924. http://dx.doi.org/10.1116/1.1589521.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
35

Luo, Ning, Gaohua Liao e H. Q. Xu. "k.p theory of freestanding narrow band gap semiconductor nanowires". AIP Advances 6, n.º 12 (dezembro de 2016): 125109. http://dx.doi.org/10.1063/1.4972987.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
36

Magno, R., E. R. Glaser, B. P. Tinkham, J. G. Champlain, J. B. Boos, M. G. Ancona e P. M. Campbell. "Narrow band gap InGaSb, InAlAsSb alloys for electronic devices". Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 24, n.º 3 (2006): 1622. http://dx.doi.org/10.1116/1.2201448.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
37

Lee, Y., M. Lee, S. Sadki, B. Tsuie e J. R. Reynolds. "A New Narrow Band Gap Electroactive Silole Containing Polymer". Molecular Crystals and Liquid Crystals 377, n.º 1 (janeiro de 2002): 289–92. http://dx.doi.org/10.1080/10587250211630.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
38

Lhuillier, Emmanuel. "Narrow band gap nanocrystals for infrared cost-effective optoelectronics". Photoniques, n.º 116 (2022): 54–57. http://dx.doi.org/10.1051/photon/202211654.

Texto completo da fonte
Resumo:
Infrared optoelectronics is driven by epitaxially grown semiconductors and the introduction of alternative materials is often viewed with some suspicion until the newcomer has demonstrated a high degree of viability. Infrared nanocrystals have certainly reached this degree of maturity switching from the demonstration of absorption by chemists to their integration into increasingly complex systems. Here, we review some of the recent developments relative to the integration of nanocrystal devices in the 1-5 µm range.
Estilos ABNT, Harvard, Vancouver, APA, etc.
39

Mulenko, S. A., Y. V. Kudryavtsev e V. P. Mygashko. "Laser synthesis of semiconductor nanostructures with narrow band gap". Applied Surface Science 253, n.º 19 (julho de 2007): 7973–76. http://dx.doi.org/10.1016/j.apsusc.2007.02.073.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
40

MALKOVA, M., e F. DOMINGUEZ-ADAME. "TRANSMISSION RESONANCES IN MAGNETIC STRUCTURES BASED ON NARROW-GAP SEMICONDUCTORS". Surface Review and Letters 07, n.º 01n02 (fevereiro de 2000): 123–26. http://dx.doi.org/10.1142/s0218625x00000166.

Texto completo da fonte
Resumo:
In this work we are concerned with magnetic junction structures in which a homogeneous narrow-gap semiconductor is subjected to an inhomogeneous magnetic field, in an attempt to elucidate the band-structure effect on the resonance tunneling. Careful investigation of the transmission as a function of the energy shows that the resonances in the spectrum can appear. These are remnants of the Landau levels localized near the interface boundary. Comparing the solutions obtained within two-band and single-band models we found the allowed values of the momentum to be quite different, resulting in different resonant values of the transmission coefficient of electron transport through the magnetic interface.
Estilos ABNT, Harvard, Vancouver, APA, etc.
41

Fan, Guang Hui, De Xun Zhao, Jiao He e Ying Kai Liu. "Transmission Properties in 2D Phononic Crystal Thin Plate with Linear Defect". Advanced Materials Research 652-654 (janeiro de 2013): 1383–87. http://dx.doi.org/10.4028/www.scientific.net/amr.652-654.1383.

Texto completo da fonte
Resumo:
The band gap of 2D perfect phononic crystal thin plate was investigated by plane-wave expansion (PWE), which is consist of copper embedded in the organic glass with a square arrangement. The band gap of straight linear defect, branching linear defect, and symmetrical linear defect are calculated by supercell plane wave method respectively. It is found that the bandwidth of defect structure will become narrow. Especially there is little band gap appearing for straight linear defect. As the filling fraction varied, the band gap width and the band gap number changed.
Estilos ABNT, Harvard, Vancouver, APA, etc.
42

Aleshkin V. Ya. e Dubinov A. A. "Influence of quantum well parameters on the spectrum of two-dimensional plasmons in HgTe/CdHgTe heterostructures". Semiconductors 56, n.º 13 (2022): 2026. http://dx.doi.org/10.21883/sc.2022.13.54781.45.

Texto completo da fonte
Resumo:
Influence of parameters of a quantum well and electronic polarizability spatial dispersion on the dependence of two-dimensional plasmon energy on wave vector in narrow-gap CdHgTe quantum wells (band gap 35 meV) is studied theoretically. It is shown that at energies above 20 meV, the dispersion law of two-dimensional plasmons is close to linear. Taking into account the finite width of the quantum well decreases the plasmon phase velocity. This effect increases with an increase in the fraction of cadmium in the QW while maintaining the band gap and with a decrease in the concentration of charge carriers in it. Keywords: two-dimensional plasmon, narrow-gap HgTe.
Estilos ABNT, Harvard, Vancouver, APA, etc.
43

Sun, Chenglong. "Preparation and photocatalytic application of nonmetallic doped TiO2 films with narrow band gap". Applied and Computational Engineering 7, n.º 1 (21 de julho de 2023): 801–6. http://dx.doi.org/10.54254/2755-2721/7/20230516.

Texto completo da fonte
Resumo:
TiO2 thin film has become a widely used photocatalyst due to its stable chemical properties, suitable edge position, non-toxicity and low cost, and the film structure is conducive to recycling and loading. However, because the band gap of titanium dioxide is relatively wide, visible light is difficult to be utilized, which also limit the utilization of TiO2. In recent years, non-metallic doping has been proven to be an extraordinarily efficient methodologies to reduce band gap and improve photocatalytic efficiency of TiO2 films. In this paper, the basic principle of photocatalysis and the principle of reducing band gap by doping inorganic non-metallic elements are briefly introduced, and the preparation methods of N, C and B inorganic non-metallic elements doped TiO2 films are reviewed, as well as their functions on reducing band gap of TiO2. Finally, the research status of inorganic non-metallic element doped TiO2 thin film in photodecomposition of water and organic decomposition in catalytic solution was introduced.
Estilos ABNT, Harvard, Vancouver, APA, etc.
44

Saidov, M. S. "Peculiarities of solar elements based on narrow-band-gap semiconductors". Applied Solar Energy 47, n.º 4 (dezembro de 2011): 259–62. http://dx.doi.org/10.3103/s0003701x1104013x.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
45

Liu Yanhong, 刘艳红, 董丽娟 Dong Lijuan, 刘丽想 Liu Lixiang e 石云龙 Shi Yunlong. "Narrow Bandpass Angular Filter Based on Anisotropic Photonic Band Gap". Acta Optica Sinica 33, n.º 8 (2013): 0823001. http://dx.doi.org/10.3788/aos201333.0823001.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
46

Lind, Erik, Yann-Michel Niquet, Hector Mera e Lars-Erik Wernersson. "Accumulation capacitance of narrow band gap metal-oxide-semiconductor capacitors". Applied Physics Letters 96, n.º 23 (7 de junho de 2010): 233507. http://dx.doi.org/10.1063/1.3449559.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
47

Liu, Xiaofeng, Ben B. Y. Hsu, Yanming Sun, Cheng-Kang Mai, Alan J. Heeger e Guillermo C. Bazan. "High Thermal Stability Solution-Processable Narrow-Band Gap Molecular Semiconductors". Journal of the American Chemical Society 136, n.º 46 (5 de novembro de 2014): 16144–47. http://dx.doi.org/10.1021/ja510088x.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
48

Zhang, Han-Yue, Chun-Li Hu, Zhao-Bo Hu, Jiang-Gao Mao, You Song e Ren-Gen Xiong. "Narrow Band Gap Observed in a Molecular Ferroelastic: Ferrocenium Tetrachloroferrate". Journal of the American Chemical Society 142, n.º 6 (23 de janeiro de 2020): 3240–45. http://dx.doi.org/10.1021/jacs.9b13446.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
49

Popov, Andrei, Victor Sherstnev, Yury Yakovlev, Peter Werle e Robert Mücke. "Relaxation oscillations in single-frequency InAsSb narrow band-gap lasers". Applied Physics Letters 72, n.º 26 (29 de junho de 1998): 3428–30. http://dx.doi.org/10.1063/1.121655.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
50

Zhang, Zhi-Xu, Han-Yue Zhang, Wei Zhang, Xiao-Gang Chen, Hui Wang e Ren-Gen Xiong. "Organometallic-Based Hybrid Perovskite Piezoelectrics with a Narrow Band Gap". Journal of the American Chemical Society 142, n.º 41 (1 de outubro de 2020): 17787–94. http://dx.doi.org/10.1021/jacs.0c09288.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Oferecemos descontos em todos os planos premium para autores cujas obras estão incluídas em seleções literárias temáticas. Contate-nos para obter um código promocional único!

Vá para a bibliografia